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Abstract

We investigate a stochastic network composed of Integrate-and-Fire spiking neurons,
focusing on its mean-field asymptotics. We consider an invariant probability measure
of the McKean-Vlasov equation and establish an explicit sufficient condition to ensure
the local stability of this invariant distribution. Furthermore, we prove a conjecture
proposed initially by J. Touboul and P. Robert regarding the bistable nature of a spe-
cific instance of this neuronal model.
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1 Introduction

We consider a network of N spiking neurons. Each neuron is characterized by its
membrane potential (X i,N

t )t≥0. Each neuron emits “spikes” randomly, at a rate f(X i,N
t ),

which only depends on its membrane potential. The function f : R → R+ is determinis-
tic. When a neuron spikes (say neuron i spikes at time τ), its potential is instantaneously
reset to zero (we say zero is the resting value) while the other neurons receive a small
kick:

X i,N
τ+ = 0, and ∀j 6= i, Xj,N

τ+ = Xj,N
τ− + JN

i→j .

In this equation, the synaptic weight JN
i→j is a deterministic constant that models the

interaction between the neurons i and j. Finally, between the spikes, each neuron
follows its own dynamics given by the scalar ODE:

Ẋ i,N
t = b(X i,N

t ),

where b : R → R is a deterministic function. We say that b models the sub-threshold
dynamics of the neuron. We are interested in the dynamics of one particle (say (X1,N

t ))
in the limit where the number of particles N goes to infinity. To simplify, we assume
that the neurons are all-to-all connected with the same weight:

∀i, j, i 6= j JN
i→j =

J

N
.
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On a mean-field model of spiking neurons

In this work, the deterministic constant J is non-negative (when f is non-decreasing, we
say it is an excitatory network). At the initial time, all the neurons start with i.i.d. initial
conditions with law ν ∈ P(R+). We assume that b(0) ≥ 0, so the membrane potentials
stay on R+.

One expects propagation of chaos to hold: as N goes to infinity, any pair of neurons
of the network (say X1,N

t and X2,N
t ) become more and more independent, and each

neuron (say (X1,N
t )) converges in law to the solution of the following McKean-Vlasov

equation:

Xν
t = Xν

0 +

∫ t

0

b(Xν
s )ds+ J

∫ t

0

Ef(Xν
s )ds−

∫ t

0

∫

R+

Xν
s−1{z≤f(Xν

s−
)}N(ds, dz). (1.1)

In this equation, N(ds, dz) is a Poisson measure on R2
+ with intensity the Lebesgue mea-

sure dsdz. In addition, the initial condition Xν
0 has law ν ∈ P(R+) and is independent

of the Poisson measure. Informally, eq. (1.1) can be understood in the following way:
between the jumps, (Xν

t ) solves the ODE Ẋν
t = b(Xν

t ) + JEf(Xν
t ) and (Xν

t ) jumps to
zero at a rate f(Xν

t ).
This model of neurons is sometimes known in the literature as the “Escape noise”,

“Noisy output”, “Hazard rate” model. We refer to [14, Ch. 9] for a review. From a
mathematical point of view, it was first introduced by [7], where it is described as a
time-continuous version of the Galves–Löcherbach model [13]. Under few assumptions
on b, f , and on the initial condition ν, it is known that (1.1) is well-posed: see [7]
(with the assumption that the initial condition ν is compactly supported), [12] (assuming
only that ν has a first moment) and [4] (where a different proof is given, based on the
renewal structure of the equation, see Theorem 2.2 below). The convergence of the
finite particle system (X i,N

t ) to the solution of (1.1) is studied in [12] where the rate of
convergence, of the order C(t)/

√
N , is also given.

When the number of neurons is finite, the network (X i,N
t ) is a Markov process (it is a

Piecewise Deterministic Markov Process, see [6]). So under quite general assumptions
on b, and f , this R

N
+ -valued process has a unique invariant probability measure, which

is globally attractive. We refer to [10], [20], [16] and [17] for studies about the long
time behavior of the finite particle system.

The long time behavior of the solution of the limit equation (1.1) is more complex,
essentially because this is a McKean-Vlasov equation, and so it is not Markovian. In par-
ticular, (1.1) may have multiple invariant probability measures (see [20, 4] and Section 4
below for explicit examples). Even when the invariant probability measure is unique, it
is not necessarily attractive. In [8, 5], the authors show that a Hopf bifurcationmight ap-
pear when the interaction parameter J varies, leading to periodic solutions of (1.1). The
specific case b ≡ 0 is studied in [12]. It is proved that for all J > 0, there are precisely
two invariant probability measures: the Dirac δ0, which is unstable, and a non-trivial
one, which is globally attractive. This case b ≡ 0 is also investigated in [9], where the
authors prove that the non-trivial invariant measure is locally attractive with an expo-
nential rate of convergence. Both [12] and [9] rely on the Fokker-Planck PDE satisfied
by the density of the solution of (1.1). Finally, in [4], general conditions are given on b
and f such that the McKean-Vlasov equation (1.1) admits a globally attractive invariant
measure, assuming that the interaction parameter J is small enough. For such weak
enough interactions, similar results have been obtained for variants of this model, such
as the time-elapsed model (see [19]) or the Integrate-and-fire with a fixed deterministic
threshold (see [1], [2] and [11] for another “Poissonian” variant). Finally, in [18], the au-
thors consider the case b(x) = −x, f(x) = kmin(x, λ) for some constants k, λ > 0. They
obtain a bistability result using a coupling method and study the metastable behavior
of the particle system.
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Understanding the long time behavior of (1.1) for an arbitrary interaction parameter
J is a challenging open question. In this work, we address the question of the local
stability of an invariant probability measure of (1.1), without assumptions on the size
of the interactions J . We say that ν∞ ∈ P(R+) is an invariant probability measure of
(1.1) if for all t ≥ 0, it holds that the law of Xν∞

t , solution of (1.1), is equal to ν∞. We
are interested in the stability of such an invariant probability measure ν∞. Our main
contribution is to provide an explicit criterion to decide stability. If this criterion is
satisfied, then for any ν ∈ P(R+) sufficiently closes to ν∞, the law of Xν

t converges to
ν∞, at an exponential rate.

Recently, in [3], this question has been addressed for McKean-Vlasov with smooth
coefficients driven by Brownian motions. It is shown that the stability is governed by
the location of the zeros of a particular analytic function associated to the dynamics. We
follow and adapt to (1.1) the strategy introduced in [3]. One key difficulty is to identify
a distance on probability measures that is well-suited to the particular structure of (1.1).
While the WassersteinW1 distance is used in [3] for McKean-Vlasov driven by Brownian
motions, we use here instead the “Bounded Lipschitz” distance, see eq. (1.2) below.
Using this distance, we first prove a stability result of (1.1) on a finite time interval
[0, T ] (Theorem 2.2). Using the same distance, we then study the long time behavior
of an auxiliary Markov process, see Proposition 2.5. Combining these two results, we
derive our main result, Theorem 2.8, which provides an explicit criterion to decide if an
invariant probability measure is stable and quantifies the convergence. We then identify
in Proposition 2.9 a structural condition on the coefficients, namely f + b′ ≥ 0, such that
eq. (1.1) has a unique, locally stable, invariant probability measure. This generalizes
the results of [12] and [9], valid for b ≡ 0.

Finally, we study an explicit example where bistability occurs. We study the case:

f(x) = x2 and b(x) = −x, ∀x ∈ R+.

This example is studied numerically in [20]. In this work, the authors conjecture that
(1.1) exhibits a phase transition: there is a parameter J∗ > 0 such that for all J < J∗,
(1.1) has a unique invariant probability measure (the Dirac mass at zero) while for all
J > J∗, (1.1) has three invariant probability measures (the Dirac mass at zero and
two other non-trivial probability measures). We provide a proof of this conjecture; see
Proposition 4.4. Provided that J > J∗, an exact analysis of the stability of the two non-
trivial stationary distributions seems impossible. However, a local analysis near the
bifurcation points J = J∗ is possible. Then, in view of Theorem 2.8, we conjecture that
one is stable and the other is unstable. As the Dirac probability measure is stable (see
[20]), we deduce that bistability is the main paradigm for J > J∗.

Main notations. We write P(R+) for the space of probability measures on R+.
Given ν ∈ P(R+) and g : R+ → R a test function, we write 〈g, ν〉 =

∫
R+

g(x)ν(dx). For Z

a random variable on R+, we write Law(Z) ∈ P(R+) for its probability law. We denote
by Lip1(R+) the space of globally Lipschitz functions from R+ to R with Lipschitz norm
bounded by 1. We equip P(R+) with the following distance: for all ν, µ ∈ P(R+),

‖ν − µ‖0 := sup

{∫

R+

gd(ν − µ); g ∈ Lip1(R+), sup
x∈R+

|g(x)| ≤ 1

}
. (1.2)

2 Main results

LetN(ds, dz) be a Poisson measure on R+×R+ with intensity the Lebesgue measure
dsdz. Given f : R+ → R+, b : R+ → R and J ≥ 0, we consider the McKean-Vlasov SDE
(1.1), where at the initial time, Xν

0 is distributed according to law ν ∈ P(R+).
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On a mean-field model of spiking neurons

Assumption 2.1. We assume that b, f ∈ C1(R+;R+) with ‖f‖∞ + ‖f ′‖∞ < ∞ and that
b is globally Lipschitz, with b(0) ≥ 0.

The condition b(0) ≥ 0 ensures that the dynamics stays on R+. We first show the
following existence and stability result on a finite horizon time [0, T ]:

Theorem 2.2. Under Assumption 2.1, the mean-field equation (1.1) has a unique path-
wise solution for all ν ∈ P(R+). In addition, for all T > 0, there exists a constant CT

such that for all t ∈ [0, T ]:

∀ν, µ ∈ P(R+), ‖Law(Xν
t )− Law(Xµ

t )‖0 ≤ CT ‖ν − µ‖0.

Our second result concerns the ergodic behavior of the following associated linear
equation. Let α > 0. Denote by (Y α,ν

t ) the solution of

Y α,ν
t = Y α,ν

0 +

∫ t

0

b(Y α,ν
s )ds+ αt−

∫ t

0

∫

R+

Y α,ν
s− 1{z≤f(Y α,ν

s− )}N(ds, dz), (2.1)

with Law(Y α,ν
0 ) = ν. That is, we have “frozen” the non-linear interactions JEf(Xν

t ) of
(1.1), and we have replaced it by the constant drift α.

We denote by ϕα
t (x) the unique solution of the ODE

d

dt
ϕα
t (x) = b(ϕα

t (x)) + α, with ϕα
0 (x) = x.

In what follows, we assume that

Assumption 2.3. The triple (b, f, α) satisfies

1. The jump rate is asymptotically lower bounded:

λ := lim inf
t→∞

inf
x≥0

1

t

∫ t

0

f(ϕα
s (x))ds > 0. (2.2)

2. There exists a constant C such that for all t ≥ 0 and x, y ∈ R+:

|ϕα
t (x) − ϕα

t (y)| ≤ C|x − y|.

Remark 2.4. The constants λ and C are allowed to depend on α. The first point is
satisfied if f(x) ≥ fmin > 0. The second point is satisfied if b(x) = b0 − b1x where
b0, b1 ≥ 0. Indeed, in that case, the flow is:

ϕα
t (x) =

{(
x− b0+α

b1

)
e−b1t + b0+α

b1
if b1 > 0,

x+ (b0 + α)t if b1 = 0.
(2.3)

We have:

Proposition 2.5. Under Assumption 2.1 and 2.3, there exists C∗ > 0 and λ∗ ∈ (0, λ)

such that for all ν, µ ∈ P(R+), and for all t ≥ 0

‖Law(Y α,ν
t )− Law(Y α,µ

t )‖0 ≤ C∗e
−λ∗t‖ν − µ‖0.

Therefore, (2.1) has a unique invariant probability measure. As shown in [4], this
invariant probability measure is:

να∞(x)dx =
γ(α)

b(x) + α
exp

(
−
∫ x

0

f(y)

b(y) + α
dy

)
1[0,σα)(x)dx, (2.4)
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where the support σα ∈ (0,∞] is given by

σα = inf{y ≥ 0; b(y) + α = 0} = lim
t→∞

ϕα
t (0).

The changes of variables y = ϕα
u(0) and x = ϕα

t (0) in (2.4) show that for any bounded
measurable test function g,

〈g, να∞〉 = γ(α)

∫ ∞

0

g(ϕα
t (0)) exp

(
−
∫ t

0

f(ϕα
u(0))du

)
dt.

In particular, choosing g = f , we find that γ(α) satisfies:

γ(α) =

∫

R+

f(x)να∞(x)dx.

We say that ν∞, an invariant probability measure of (1.1), is non-trivial if J〈f, ν∞〉 6=
0. Note that there is a one-to-one correspondence between the non-trivial invariant
probability measures of (1.1) and the α > 0 satisfying:

α = Jγ(α).

Let ν∞ be a non-trivial invariant probability measure of (1.1). Let α = J〈f, ν∞〉 such
that ν∞ = να∞. We assume that the triple (b, f, α) satisfies Assumption 2.3. To state our
main result on the stability of ν∞, we need to introduce two notations. We define for all
t ≥ 0

Hα(t) := exp

(
−
∫ t

0

f(ϕα
s (0))ds

)
, (2.5)

Ψα(t) := α

∫ ∞

0

Hα(t+ u)
f(ϕα

t+u(0))− f(ϕα
u(0))

b(ϕα
u(0)) + α

du. (2.6)

Let λ∗ > 0 be the constant given by Proposition 2.5.

Assumption 2.6. Assume that f ∈ C2(R+;R+) with ‖f (k)‖∞ < ∞ for k ∈ {0, 1, 2}.
Assume b ∈ C2(R+;R) with b(0) ≥ 0 and ‖b′‖∞ + ‖b′′‖∞ < ∞. Finally, assume there
exists a constant λα ∈ (0, λ∗) such that

sup
t≥0

eλαt

∫ ∞

0

Hα(t+ u)

∣∣∣∣
f(ϕα

t+u(0))− f(ϕα
u(0))

b(ϕα
u(0)) + α

∣∣∣∣ du <∞.

Remark 2.7. This last estimate holds if b(x) = b0 − b1x with b1 ≥ 0. This follows from
the explicit expression of ϕα

t (0), see (2.3), and from the fact that f is globally Lipschitz.

We write Dα := {z ∈ C, ℜ(z) > −λα}. We consider for z ∈ Dα

Ĥα(z) :=

∫ ∞

0

e−ztHα(t)dt,

the Laplace transform of Hα. Similarly, let Ψ̂α(z) be the Laplace transform of Ψα. By
assumption, the two functions are analytic on Dα. Our main result is

Theorem 2.8. Let ν∞ be a non-trivial invariant probability measure of (1.1). Let α =

J〈f, ν∞〉 ∈ R∗
+. In addition to Assumptions 2.3 and 2.6, assume that

−λ′α := sup{ℜ(z); z ∈ Dα, Ĥα(z) = Ψ̂α(z)} < 0. (2.7)

Then there exists C, ǫ > 0 and λ ∈ (0, λ′α) such that for all initial condition ν ∈ P(R+)

with ‖ν − ν∞‖0 < ǫ, it holds that

∀t ≥ 0, ‖Law(Xν
t )− ν∞‖0 ≤ Ce−λt‖ν − ν∞‖0.
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On a mean-field model of spiking neurons

We provide in Section 4 an explicit example with multiple invariant probability mea-
sures. The spectral assumption λ′α > 0 is automatically satisfied if the structural condi-
tion f + b′ ≥ 0 holds. More precisely,

Proposition 2.9. We have:

1. Let ν∞ be a non-trivial invariant probability measure of (1.1). Let α = J〈f, ν∞〉 ∈
R∗

+. In addition to Assumption 2.3 and 2.6, assume that f + b′ ≥ 0 on [0, σα). Then
λ′α > 0, and so ν∞ is locally stable.

2. Grant Assumption 2.1. Assume moreover that b ∈ C1(R+), b(0) > 0 and that
f + b′ ≥ 0 on R+. Then (1.1) has exactly one non-trivial invariant probability
measure.

3 Proofs

3.1 Notations

Let T > 0. Given a ∈ C([0, T ];R+), we denote by Y a,ν
t,s the solution of the linear

non-homogeneous SDE

Y a,ν
t,s = Y a,ν

s,s +

∫ t

s

b(Y a,ν
u,s )du+

∫ t

s

audu−
∫ t

s

∫

R+

Y a,ν
u−,s1{z≤f(Y a,ν

u−,s
)}N(du, dz), (3.1)

where at time s, Law(Y a,ν
s,s ) = ν. We let ϕa

t,s(x) be the solution of the ODE

d

dt
ϕa
t,s(x) = b(ϕa

t,s(x)) + at, ϕa
s,s(x) = x.

As in [4], we denote by Kν
a (t, s) the density of the first jump of (Y a,ν

t,s )t≥s:

Kν
a (t, s) :=

∫

R+

f(ϕa
t,s(x)) exp

(
−
∫ t

s

f(ϕa
u,s(x))du

)
ν(dx).

Similarly, let Hν
a (t, s) be the survival function of the first jump:

Hν
a (t, s) :=

∫

R+

exp

(
−
∫ t

s

f(ϕa
u,s(x))du

)
ν(dx).

When a does not depend on t, that is a ≡ α ∈ R+, we write for all t, x ≥ 0:

Hx
α(t) = Hδx

α (t, 0), Kx
α(t) = Kδx

α (t, 0), ϕα
t (x) = ϕα

t,0(x). (3.2)

3.2 Proof of Theorem 2.2

Lemma 3.1. There exists a constant CT such that for all g ∈ C1(R+), for all a, ã ∈
C([0, T ];R+), for all 0 ≤ s ≤ t ≤ T ,

∣∣∣∣∣

∫

R+

g(ϕa
t,s(x))H

δx
a (t, s)ν(dx) −

∫

R+

g(ϕã
t,s(x))H

δx
ã (t, s)µ(dx)

∣∣∣∣∣

≤ CT (‖g‖∞ + ‖g′‖∞)

[∫ t

s

|au − ãu|du+ ‖ν − µ‖0
]
.

Proof. Write Fa(x) = g(ϕa
t,s(x))H

δx
a (t, s). Using the explicit formula satisfied by the

survival function Hδx
a (t, s), we find that Fa is C1(R+) with ‖Fa‖∞ ≤ ‖g‖∞ and

‖F ′
a‖∞ ≤ [‖g′‖∞ + ‖g‖∞‖f ′‖∞] eT‖b′‖∞ .
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Therefore, for CT = (1 + eT‖b′‖∞)(1 + ‖f ′‖∞), we have:

|〈Fa, ν − µ〉| ≤ CT (‖g‖∞ + ‖g′‖∞)‖ν − µ‖0.

In addition, using Gronwall’s inequality, we find that

|ϕa
t,s(x) − ϕã

t,s(x)| ≤ eT‖b′‖∞

∫ t

s

|au − ãu|du.

Using the explicit formula of Fa, we deduce that there exists another constant CT such
that

|Fa(x) − Fã(x)| ≤ CT (‖g‖∞ + ‖g′‖∞)

∫ t

s

|au − ãu|du.

Altogether, we deduce the result.

Let rνa(t, s) := Ef(Y a,ν
t,s ). It holds that the jump rate rνa(t, s) and K

ν
a (t, s) are linked by

the following Volterra integral equation [4]:

Lemma 3.2. It holds that:

rνa(t, s) = Kν
a (t, s) +

∫ t

s

rδ0a (t, u)Kν
a (u, s)du.

Proof. Let t ≥ s and τs := inf{u > s, Y a,ν
u−,s 6= Y a,ν

u,s } be the time of the first jump of Y a,ν
·,s

after s. The law of τs is Kν
a (u, s)du. We have

rνa(t, s) = Ef(Y a,ν
t,s ) = Ef(Y a,ν

t,s )1{τs≥t} + Ef(Y a,ν
t,s )1{τs∈(s,t)}.

For a fixed initial condition x, it holds that Y a,δx
t,s = ϕa

t,s(x) under the event {τs > t}.
Therefore, the first term is equal to

∫

R+

f(ϕa
t,s(x))H

δx
a (t, s)ν(dx) = Kν

a (t, s).

Using the strong Markov property at time τs and using that the process is reset to 0

after this jump, we find that the second term is equal to

Ef(Y a,ν
t,s )1{τs∈(s,t)} = Ef(Y a,δ0

t,τs 1{τs∈(s,t)}) =

∫ t

s

rδ0a (t, u)Kν
a (u, s)du.

Altogether, we deduce the result.

More generally, by the exact same argument, we have

Lemma 3.3. Let g : R+ → R be a bounded test function. It holds that for all t ≥ s,

Eg(Y a,ν
t,s ) =

∫

R+

g(ϕa
t,s(x))H

δx
a (t, s)ν(dx) +

∫ t

0

Kν
a (u, s)Eg(Y

a,δ0
t,u )du.

Exploiting the Volterra integral equation of Lemma 3.2, we deduce that:

Lemma 3.4. There exists a constant CT such that for all a, ã ∈ C([0, T ];R+), it holds
that

∀s ≤ t ≤ T, |rνa − rµã |(t, s) ≤ CT

∫ t

s

|au − ãu|du+ CT ‖ν − µ‖0.
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Proof. We first prove the inequality when ν = µ = δ0. To simplify the notations, we also
denote by ra(t, s) := rδ0a (t, s) and Ka(t, s) := Kδ0

a (t, s). Let ∆(t, s) := ra(t, s) − rã(t, s).
Using Lemma 3.2, we have

∆(t, s) = (Ka −Kã)(t, s) +

∫ t

s

(Ka −Kã)(u, s)ra(t, u)du+

∫ t

s

Kã(u, s)∆(t, u)du.

As |ra(t, s)| ≤ ‖f‖∞ and |Ka(t, s)| ≤ ‖f‖∞, this shows that (t, s) 7→ ∆(t, s) is continuous.
In addition we have:

|∆(t, s)| ≤ CT

∫ t

s

|au − ãu|du + CT

∫ t

s

|∆(t, u)|du.

We conclude by using the Grönwall’s inequality. The extension to arbitrary ν, µ ∈ P(R+)

follows from Lemma 3.1 (with g = f ) and Lemma 3.3.

By similar arguments, we have, using Lemma 3.1 and Lemma 3.3:

Lemma 3.5. There exists a constant CT such that for all a, ã ∈ C([0, T ];R+), for all
g ∈ C1(R+):

∀s ≤ t ≤ T, |Eg(Y a,ν
t,s )− Eg(Y ã,µ

t,s )| ≤ CT (‖g‖∞ + ‖g′‖∞)

[∫ t

s

|au − ãu|du+ ‖ν − µ‖0
]
.

We now give the proof of Theorem 2.2. Existence is proven exactly as in [4]. We
prove the stated stability estimate, which implies uniqueness. Let (Xν

t ) and (Xµ
t ) be

two solutions of (1.1) starting from laws ν and µ. Let at = JEf(Xν
t ) and ãt = JEf(Xµ

t ).
Then, a ∈ C([0, T ];R+). Indeed, by Ito’s formula, we have

at = JEf(Xν
t ) = JEf(Xν

0 )+

∫ t

0

JEf ′(Xν
s )(b(X

ν
s ) + as)ds+

∫ t

0

JE(f(0)−f(Xν
s ))f(X

ν
s )ds.

In addition, (Xν
t ) is a solution of (3.1) with a. The same holds for (Xµ

t ) with ã. Therefore,
by Lemma 3.4 (with s = 0), we deduce that

|at − ãt| ≤ CT

∫ t

0

|au − ãu|du + CT ‖ν − µ‖0.

By Grönwall’s inequality, we deduce that

sup
t∈[0,T ]

|at − ãt| ≤ CT e
CT ‖ν − µ‖0.

The stability estimate of Theorem 2.2 then follows from Lemma 3.5.

3.3 Proof of Proposition 2.5

Recall that the Markov process (Y α,ν
t ) is defined by (2.1). We also use the notation

Exg(Y
α
t ) := Eg(Y α,δx

t ), for all x ≥ 0. The first step is to prove that rα(t) := E0f(Y
α
t )

converges to γ(α) at an exponential speed:

Lemma 3.6. Under assumptions 2.1 and 2.3, there is a constant θα > 0 such that

sup
t≥0

|rα(t)− γ(α)|eθαt <∞.

Proof. By Lemma 3.2, rα is the solution of a Volterra convolution equation. Therefore,
the strategy is to use the Laplace transform to deduce the asymptotic behavior of t 7→
rα(t) from the location of the poles of r̂α(z). The arguments can be found in [4]. We only
use here that f is C1, f ′b and f2 are bounded and that lim inft→∞

1
t

∫ t

0 f(ϕ
α
s (0))ds > 0.
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We then show that we have convergence in total variation norm:

Lemma 3.7. There are constants C, θα > 0 such that for all g ∈ C(R+) with ‖g‖∞ <∞:

sup
x≥0

|Exg(Y
α
t )− 〈g, να∞〉| ≤ C‖g‖∞e−θαt, ∀t ≥ 0.

Proof. Recall that Hα(t) is defined by (2.5) and that Kα(t) := − d
dtHα(t). We first show

the result for x = 0. By Lemma 3.3,

E0g(Y
α
t ) = g(ϕα

t (0))Hα(t) +

∫ t

0

Kα(u)E0g(Y
α
t−u)du.

We solve this Volterra equation and find:

E0g(Y
α
t ) = g(ϕα

t (0))Hα(t) +

∫ t

0

rα(t− u)g(ϕα
u(0))Hα(u)du.

We used here that rα is the resolvent ofKα, see [15, Ch. 2]. We write rα(t) = γ(α)+ξα(t)

with |ξα(t)| ≤ Ce−θαt. We deduce that

E0g(Y
α
t )− γ(α)

∫ ∞

0

g(ϕα
u(0))Hα(u)du = g(ϕα

0 (t))Hα(t) +

∫ t

0

ξα(t− u)g(ϕα
0 (u))Hα(u)du

− γ(α)

∫ ∞

t

g(ϕα
0 (u))Hα(u)du =: A1 +A2 +A3.

Recall that να∞ is given by (2.4). The change of variable x = ϕα
u(0) shows that

γ(α)

∫ ∞

0

g(ϕα
u(0))Hα(u)du = 〈g, να∞〉.

Using (2.2), we deduce that there exists constants C, λ > 0 such that

∀t ≥ 0, Hα(t) ≤ Ce−λt.

Without loss of generality, we can choose θα < λ/2. Therefore, |A1| ≤ C‖g‖∞e−2θαt.
Similarly,

|A2| ≤ C2‖g‖∞
∫ t

0

e−θα(t−u)e−2θαudu ≤ C2‖g‖∞e−θαt

∫ ∞

0

e−θαudu.

Finally,

|A3| ≤ C‖f‖∞‖g‖∞e−θαt

∫ ∞

0

e−θαudu.

Altogether, there exists another constant C such that:

|E0g(Y
α
t )− 〈g, να∞〉| ≤ C‖g‖∞e−θαt.

Finally, we treat the general case. Recall that Hx
α(t) and K

x
α(t) are defined by (3.2). For

all x ≥ 0, we have by Lemma 3.3:

Exg(Y
α
t ) = g(ϕα

t (x))H
x
α(t) +

∫ t

0

Kx
α(u)E0g(Y

α
t−u)du,

and so, using that
∫∞

0 Kx
α(u)du = 1, it holds that

Exg(Y
α
t )− 〈g, να∞〉 = g(ϕα

t (x))H
x
α(t) +

∫ t

0

Kx
α(u)(E0g(Y

α
t−u)− 〈g, να∞〉)du + 〈g, να∞〉Hx

α(t).

Therefore, the stated estimate is deduced from the case x = 0.
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Recall that the constant λ > 0 is defined by (2.2). The next step is to prove that

Lemma 3.8. There exists a constant C such that for all g ∈ C1(R+) with ‖g‖∞ ≤ 1 and
‖g′‖∞ ≤ 1, for all x, y ≥ 0:

|g(ϕα
t (x))H

x
α(t)− g(ϕα

t (y))H
y
α(t)| ≤ C|x− y|e−(λ/2)t.

Proof. We first show the result when g ≡ 1. We use the inequality |e−A − e−B| ≤
e−min(A,B)|A−B|, valid for all A,B ≥ 0. Using Assumption 2.3, we deduce that

|Hx
α(t)−Hy

α(t)| ≤ Ce−(2λ/3)t

∫ t

0

|f(ϕα
u(x)) − f(ϕα

u(y))|du.

Using that f is globally Lipschitz and that |ϕα
t (x) − ϕα

t (y)| ≤ C|x − y|, we deduce the
stated inequality. The general case is deduced similarly, as g and g′ are assumed to be
bounded by one.

Finally, we give the proof of Proposition 2.5. In what follows, the constant λ > 0

might decrease from line to line. Let g ∈ C1(R+) with ‖g‖∞ ≤ 1 and ‖g′‖∞ ≤ 1. We
write

Exg(Y
α
t )− Eyg(Y

α
t ) = g(ϕα

t (x))H
x
α(t)− g(ϕα

t (y))H
y
α(t)

+

∫ t

0

(Kx
α(u)−Ky

α(u))E0g(Y
α
t−u)du.

The first term is bounded by C|x− y|e−λt by the previous lemma. In addition,

∀t ≥ u, |E0g(Y
α
t−u)− 〈g, να∞〉| ≤ Ce−λ(t−u).

So, using that
∫∞

0
(Kx

α(u)−Ky
α(u))du = 0, we find that the second term is bounded by

|Hx
α(t)−Hy

α(t)||〈g, να∞〉|+ C|x− y|e−λt.

Altogether, we deduce that there is a constant C > 0 and λ > 0 such that for all x, y:

|Exg(Y
α
t )− Eyg(Y

α
t )| ≤ C|x − y|e−λt.

We define:

vt(x) := (Exg(Y
α
t )− 〈g, να∞〉)eλt.

In view of Lemma 3.3, it holds that vt ∈ C1(R+). By the previous results, we have for
some constant C (independent of g):

‖vt‖∞ + ‖v′t‖∞ ≤ C.

So

|〈vt, ν − µ〉| ≤ C‖ν − µ‖0.

In other words, by the Markov property:

‖Law(Y α,ν
t )− Law(Y α,µ

t )‖0 ≤ Ce−λt‖ν − µ‖0.

This ends the proof.
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3.4 Reformulation of the spectral assumption

In this section, we reformulate the spectral assumption (2.7). We recall that

Hy
α(t) = exp

(
−
∫ t

0

f(ϕα
u(y))du

)
, Hα(t) = H0

α(t),

Ψα(t) := α

∫ ∞

0

Hα(t+ u)
f(ϕα

t+u(0))− f(ϕα
u(0))

b(ϕα
u(0)) + α

du.

The first step is to show that

Lemma 3.9. It holds that

Ψα(t) = −J
∫ σα

0

[
d

dy
Hy

α(t)

]
να∞(dy). (3.3)

Proof. First, note that the function y 7→ ϕα
u(y) is C

1(R+) with

d

dy
ϕα
u(y) =

b(ϕα
u(y)) + α

b(y) + α
. (3.4)

Indeed, both the left-hand-side and the right-and-side of (3.4) satisfies the ODE: ∂uψu =

b′(ϕα
u(y))ψu, with ψ0 = 1. By uniqueness, (3.4) follows.
Therefore, the function y 7→ Hy

α(t) is C
1 with

d

dy
Hy

α(t) = −Hy
α(t)

∫ t

0

f ′(ϕα
u(y))

d

dy
ϕα
u(y)du = −Hy

α(t)
f(ϕα

t (y))− f(y)

b(y) + α
.

We used (3.4) to obtain the last equality. Let A(t) be equal to the right-end side of (3.3).
Plugging the explicit expression of ν∞α (see (2.4)) and using that J = α/γ(α), we find

A(t) = α

∫ σα

0

Hx
α(t)

f(ϕα
t (x)) − f(x)

(b(x) + α)2
exp

(
−
∫ x

0

f(y)

b(y) + α
dy

)
dx

= α

∫ ∞

0

exp

(
−
∫ t

0

f(ϕα
s+u(0))ds

)
f(ϕα

t+u(0))− f(ϕα
u(0))

b(ϕα
u(0)) + α

Hα(u)du.

To obtain the last equality we made the change of variables x = ϕα
u(0) and then y =

ϕα
θ (0). Hence, we find that A(t) = Ψα(t) as claimed.

Then, we define

Θα(t) := J

∫

R+

d

dy
Eyf(Y

α
t )να∞(dy).

Recall that λα > 0 is defined in Assumption 2.6 and that Dα := {z ∈ C; ℜ(z) > −λα}.
Lemma 3.10. For all z ∈ Dα, it holds that Ψ̂α(z) = Ĥα(z) if and only if Θ̂α(z) = 1.

Proof. Recall that rxα(t) := Exf(Y
α
t ). Using Lemma 3.2, we have

rxα = Kx
α + rα ∗Kx

α.

We used here the notation (rα ∗ Kx
α)(t) :=

∫ t

0
rα(t− s)Kx

α(s)ds. We differentiate with
respect to x and obtain

J
d

dx
rxα = J

d

dx
Kx

α + rα ∗
[
J

d

dx
Kx

α

]
.

Let

Ξα(t) :=
d

dt
Ψα(t). (3.5)
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In view of (3.3) and d
dtH

x
α(t) = −Kx

α(t), we have:

Ξα(t) = J

∫

R+

d

dy
Ky

α(t)ν
α
∞(dy).

We deduce that
Θα = Ξα + rα ∗ Ξα.

Taking the Laplace transform, we find that for all z ∈ C with ℜ(z) > 0:

Θ̂α(z) = Ξ̂α(z) + r̂α(z)Ξ̂α(z).

Therefore, we have

Θ̂α(z) = Ξ̂α(z) [1 + r̂α(z)]

= Ξ̂α(z)

[
1 +

K̂α(z)

1− K̂α(z)

]
(using rα = Kα +Kα ∗ rα)

=
Ξ̂α(z)

zĤα(z)
(using K̂α(z) = 1− zĤα(z)) (3.6)

=
Ψ̂α(z)

Ĥα(z)
(using Ψα(0) = 0 and

d

dt
Ψα = Ξα).

Because the left-hand side and the right-hand side are two analytic functions onDα, the
equality is in fact valid on Dα and so

∀z ∈ Dα, Θ̂α(z) = 1 ⇐⇒ Ψ̂α(z) = Ĥα(z).

We finally consider Ωα(t) the solution of the Volterra integral equation

∀t ≥ 0, Ωα(t) = Θα(t) +

∫ t

0

Ωα(t− s)Θα(s)ds.

Remark 3.11. The function Ωα(t) has a simple probabilistic interpretation using the
McKean-Vlasov equation (1.1). For all ǫ > 0, let νǫ := Law(Xν∞

0 + ǫ), with Law(Xν∞
0 ) =

ν∞. Then

Ωα(t) = lim
ǫ↓0

Ef(Xνǫ
t )− Ef(Xν∞

t )

ǫ
.

Similarly, it holds that

Θα(t) = lim
ǫ↓0

Ef(Y α,νǫ
t )− Ef(Y α,ν∞

t )

ǫ
,

where (Y α,ν
t ) is the solution of (2.1). We refer to [3] for these probabilistic interpreta-

tions as well as the connection with Lions derivatives.

Lemma 3.12. For all λ < λ′α, where λ
′
α is given by (2.7), we have supt≥0|Ωα(t)|eλt <∞.

In other words, λ′α gives the rate of convergence of Ωα(t) towards zero.

Proof. Let λ < λ′, Kt := eλtΘα(t) and Rt := eλtΩα(t). It holds that K ∈ L1(R+). By
assumption, it holds that K̂(z) 6= 0 for all ℜ(z) ≥ 0. Therefore, [15, Ch. 2, Th. 4.1]
applies and so R ∈ L1(R+). Finally, using that R = K + K ∗ R we find that R is also
bounded.
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3.5 Proof of Theorem 2.8

A sensitivity formula

Following [3], we first show the following “sensitivity” formula:

Proposition 3.13. Let k ∈ C([0, t];R) and α ∈ R+, such that infs∈[0,t](α + ks) ≥ 0.

Provided that Law(Y α+k
0 ) = Law(Y α

0 ), it holds that

Eg(Y α+k
t )− Eg(Y α

t ) =

∫ t

0

∫

R+

[
d

dy
Eyg(Y

α
t−θ)

]
kθLaw(Y

α+k
θ )(dy)dθ.

Proof. This is a Trotter-Kato formula. Define for all s ∈ (0, t] and for all y ∈ R+:

φ(s, y) := Eyg(Y
α
t−s).

The function φ is C1
b (R+ ×R+) and

∂

∂s
φ(s, y) = −Lαφ(s, y),

where Lα is the generator of (Y α
t ), solution of (2.1). This generator acts on the marginal

function φ(s, ·) and is given by

∀g ∈ C1
b (R+), Lαg(y) := g′(y)(b(y) + α) + (g(0)− g(y))f(y).

In addition, the generator of (Y α+k
s ) satisfies (Lα+k

s − Lα)g(y) = g′(y)ks. Therefore, by
Ito’s formula, we obtain:

Eφ(s, Y α+k
s ) = Eφ(0, Y α+k

0 ) + E

∫ s

0

∂

∂y
φ(u, Y α+k

u )kudu.

Replacing φ by its definition, we deduce that

Eφ(s, Y α+k
s ) = Eφ(0, Y α+k

0 ) + E

∫ s

0

∫

R+

[
d

dy
Eyg(Y

α
t−u)

]
kuLaw(Y

α+k
u )(dy)du.

Finally, we let s converge to t. Using the Markov property at time s = 0 and the fact
that φ(t, y) = g(y), we find that the stated formula holds.

Corollary 3.14. It holds that

‖Law(Y α+k,ν
t )− Law(Y α,ν

t )‖0 ≤ C∗

∫ t

0

e−λ∗(t−s)|ks|ds.

Proof. Let g ∈ Lip1(R+) with ‖g‖∞ ≤ 1. We have by Proposition 3.13:

|Eg(Y α+k,ν
t )− Eg(Y α,ν

t )| ≤
∫ t

0

{
sup
y∈R+

∣∣∣∣
d

dy
Eyg(Y

α
t−s)

∣∣∣∣

}
|ks|ds.

By Proposition 2.5, we have for y 6= y′:

|Eyg(Y
α
t )− Ey′g(Y α

t )| ≤ C∗e
−λ∗t‖δy − δy′‖0.

As ‖δy − δy′‖0 = |y − y′| for |y − y′| ≤ 1, we deduce that
∣∣∣ d
dyEyg(Y

α
t−s)

∣∣∣ ≤ C∗e
−λ∗(t−s).
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Control of the non-linear interactions

We define:

ϕν
t := JEf(Y α,ν

t )− α

kνt = JEf(Xν
t )− α.

We prove that:

Proposition 3.15. For all T > 0, there is a constant CT such that for all t ∈ [0, T ] and
for all ν ∈ P(Rd):

1. |kνt | ≤ CT ‖ν − ν∞‖0.

2.
∣∣∣kνt − ϕν

t −
∫ t

0 Θα(t− s)kνsds
∣∣∣ ≤ CT (‖ν − ν∞‖0)2.

3.
∣∣∣kνt − ϕν

t −
∫ t

0
Ωα(t− s)ϕν

sds
∣∣∣ ≤ CT (‖ν − ν∞‖0)2.

Proof. The first point is a consequence of ‖f‖∞ + ‖f ′‖∞ < ∞ and of Theorem 2.2. For
the second point, we note that Ef(Xν

t ) = Ef(Y α+kν ,ν
t ). We define ψt(y) = d

dyEyf(Y
α
t ).

We have, using Proposition 3.13 with g = Jf :

kνt − ϕν
t = JEf(Y α+kν ,ν

t )− JEf(Y α,ν
t )

= J

∫ t

0

∫

R+

d

dy
Eyf(Y

α
t−s)k

ν
sLaw(Y

α+kν ,ν
s )(dy)ds

= J

∫ t

0

Eψt−s(Y
α+kν ,ν
s )kνsds

=

∫ t

0

Θα(t− s)kνsds+ J

∫ t

0

[
Eψt−s(Y

α+kν ,ν
s )− Eψt−s(Y

α,ν∞
s )

]
kνsds.

Because f and b are assumed to be C2, there exists a constant CT such that

∀t ∈ [0, T ], ‖ψt‖∞ + ‖∂yψt‖∞ ≤ CT .

Therefore, by Theorem 2.2 we have:

∣∣∣Eψt−s(Y
α+kν ,ν
s )− Eψt−s(Y

α,ν∞
s )

∣∣∣ = |Eψt−s(X
ν
s )− Eψt−s(X

ν∞
s )| ≤ CT ‖ν − ν∞‖0.

Using the first point, we obtain the stated inequality. The last point is obtained by
iterating the estimate of the second point, as in [3].

Exactly as in [3, Lem. 2.20], we deduce from this last result and from Corollary 3.14
that:

Lemma 3.16. Let λ ∈ (0, λ′α). There exists a constant Cλ such that for all T > 0, there
exists CT > 0: for all ν ∈ P(R), for all t ∈ [0, T ],

‖Law(Xν
t )− ν∞‖0 ≤ Cλe

−λt‖ν − ν∞‖0 + CT (‖ν − ν∞‖0)2 .

We used crucially here that supt≥0|Ωα(t)|eλt < ∞, see Lemma 3.12. The proof of
Theorem 2.8 is easily deduced from Lemma 3.16, exactly as in [3].
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3.6 Proof of Proposition 2.9

The first point is to note that under the assumption inf [0,σα) f + b′ ≥ 0, we can inte-
grate by parts Ψα and Ξα:

Lemma 3.17. We have

1. The following limit exists and is finite: ν∞α (σα) := limx↑σα
ν∞α (x) <∞.

2. Define Cα := b(0)+α
γ(α) ν

∞
α (σα) and

Υα(t) := CαH
σα

α (t) +

∫ ∞

0

Hα(t+ u) [f(ϕα
u(0)) + b′(ϕα

u(0))]
b(0) + α

b(ϕα
u(0)) + α

du. (3.7)

It holds that for all t ≥ 0:

Ψα(t) =
α

b(0) + α
[Hα(t)−Υα(t)] . (3.8)

3. Define Λα(t) := − d
dtΥα(t). One has for all t ≥ 0

Λα(t) = CαK
σα

α (t) +

∫ ∞

0

Kα(t+ u) [f(ϕα
u(0)) + b′(ϕα

u(0))]
b(0) + α

b(ϕα
u(0)) + α

du. (3.9)

Moreover, for all t ≥ 0

Ξα(t) =
α

b(0) + α
[Λα(t)−Kα(t)] . (3.10)

Proof of Lemma 3.17. To prove the first point, we use the explicit formula of the invari-
ant measure (2.4): we find that for all x < σα

d

dx
να∞(x) = −γ(α)f(x) + b′(x)

(b(x) + α)2
exp

(
−
∫ x

0

f(y)

b(y) + α
dy

)
≤ 0.

Therefore, x 7→ να∞(x) is non-increasing and so limx↑σα
να∞(x) exists and is finite (it is

equals to zero if σα = ∞, and might be non-null in the case where σα < ∞). To prove
the second point, we integrate by parts the right-hand side of (3.3) and find

Ψα(t) =
α

b(0) + α
[Hα(t)− CαH

σα

α (t)] + J

∫ σα

0

Hx
α(t)

d

dx
να∞(x)dx.

The last term is equal to:

J

∫ σα

0

Hx
α(t)

d

dx
να∞(x)dx = −α

∫ σα

0

Hx
α(t)

f(x) + b′(x)

(b(x) + α)2
exp

(
−
∫ x

0

f(y)

b(y) + α
dy

)
dy.

We make the changes of variables y = ϕα
θ (0) and x = ϕα

u(0) and obtain

Ψα(t) =
α

b(0) + α
[Hα(t)− CαH

σα

α (t)]− α

∫ ∞

0

H
ϕα

u(0)
α (t)

f(ϕα
u(0)) + b′(ϕα

u(0))

b(ϕα
u(0)) + α

Hα(u)du.

Using that H
ϕα

u(0)
α (t)Hα(u) = Hα(t+u), we obtain the stated formula. Finally, recall that

Ξα(t) = d
dtΨα(t). Therefore, the third point is obtained by differentiating the second

point with respect to t.

Proof of Proposition 2.9, first point. Recall that Ξα(t) is given by (3.5) and satisfies for
all z ∈ Dα, Ξ̂α(z) = zΨ̂α(z). Similarly, it holds that K̂α(z) = 1 − zĤα(z). Let z∗ ∈ Dα

such that Ĥα(z∗) = Ψ̂α(z∗). We deduce that

1− K̂α(z∗) = Ξ̂α(z∗).
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On a mean-field model of spiking neurons

Using Lemma 3.17, we have

b(0) + α = b(0)K̂α(z∗) + αΛ̂α(z∗). (3.11)

We show that ℜ(z∗) < 0. Indeed, we have

ℜ(z) > 0 =⇒ |b(0)K̂α(z) + αΛ̂α(z)| < b(0)|K̂α(z)|+ α|Λ̂α(z)| < b(0) + α,

and so necessarily, ℜ(z∗) ≤ 0. We used here that both Kα(t) and Λα(t) are the densities
of probability measures. In addition, if z∗ = iω for some ω > 0, then

ℜ
[
b(0)(1− K̂α(iω)) + α(1− Λ̂α(iω))

]
=

∫ ∞

0

[1− cos(ωt)](b(0)Kα(t) + αΛα(t))dt.

Because for t ∈ R+, 1 − cos(ωt) > 0 almost everywhere, the right-hand side is null only
if almost everywhere

b(0)Kα(t) + αΛα(t) = 0.

This leads to a contradiction because by (3.9), we have Λα(t) ≥ 0. In addition,Kα(t) ≥ 0

and the total mass of Kα is one. Altogether, we have proved that

∀z∗ ∈ Dα, Ĥα(z∗) = Ψ̂α(z∗) =⇒ ℜ(z∗) < 0.

Using the Riemann–Lebesgue lemma, we deduce that λ′α > 0.

Proof of Proposition 2.9, second point. Assume that infx≥0 f(x) + b′(x) ≥ 0 and b(0) >

0. The number of invariant probability measures of (1.1) is given by the number of
solutions of the equation α = Jγ(α), α ≥ 0. We first prove that the continuous function
G : α 7→ α

γ(α) is strictly increasing on R+. Note first the identity:

∀t ≥ 0, [b(ϕα
t (0)) + α] exp

(
−
∫ t

0

b′(ϕα
u(0))du

)
= b(0) + α.

We deduce that for all α > 0

G(α) =
α

γ(α)
= α

∫ ∞

0

Hα(t)dt

=
α

b(0) + α

∫ ∞

0

[b(ϕα
t (0)) + α] exp

(
−
∫ t

0

b′(ϕα
u(0))du

)
Hα(t)dt

=
α

b(0) + α

∫ ∞

0

[b(ϕα
t (0)) + α] exp

(
−
∫ t

0

(f + b′)(ϕα
u(0))du

)
dt.

The changes of variables y = ϕα
u(0) and x = ϕα

t (0) show that

α

γ(α)
=

α

b(0) + α

∫ σα

0

exp

(
−
∫ x

0

(f + b′)(y)

b(y) + α
dy

)
dx.

Note that the function α 7→ α
b(0)+α is non-decreasing and α 7→ σα is strictly increasing.

Moreover, because f + b′ ≥ 0, for all fixed x, the function

α 7→ exp

(
−
∫ x

0

(f + b′)(y)

b(y) + α
dy

)

is non-decreasing. So G is strictly increasing. Because b(0) > 0, we have γ(0) > 0 and
so G(0) = 0. Therefore, for all J ≥ 0, the equation G(α) = J has a unique solution.
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4 An illustrated example

To illustrate the results, we consider

f(x) = x2 and b(x) = −x, ∀x ≥ 0.

There is a slight technical difficulty: f and f ′ are not bounded and so we cannot directly
apply our results. For A > 0, we denote by

MA := {ν ∈ P(R+); J〈f, ν〉 ≤ A, ν([0, A]) = 1}.

Lemma 4.1. Let J ≥ 0. There exists a constant A > 0 large enough such that for any
initial condition ν ∈ MA, there is a unique path-wise solution to (1.1) and for all t ≥ 0,
Law(Xν

t ) ∈ MA.

Proof. Existence and uniqueness of the solution of (1.1) is not problematic since the
initial condition is compactly supported, see [12]. The existence of the constant A is
shown in [4]. The idea is that by Ito’s formula,

d

dt
Ef(Xν

t ) = Ef ′(Xν
t )[b(X

ν
t ) + JEf(Xν

t )]− Ef2(Xν
t )

≤ C2

2
− 1

2
Ef2(Xν

t )

≤ C2

2
− 1

2
(Ef(Xν

t ))
2,

for some constant C only depending on J . We used the Cauchy-Schwarz inequality to
obtain the last estimate. Then we deduce that Ef(Xν

0 ) ≤ C implies Ef(Xν
t ) ≤ C for all

t ≥ 0. Therefore, we can choose A = JC to obtain the result.

We equipMA with the distance ‖ν−µ‖0 (we could also use here the standard Wasser-
stein distanceW1(ν, µ): W1 and ‖·‖0 are equivalent on MA, as the probability measures
are compactly supported). In view of Lemma 4.1, as soon as the initial condition belongs
to MA, everything happens as if f and f ′ were bounded on R+. Therefore Theorem 2.2
and 2.8 holds with P(R+) being replaced with MA.

Our goal is now to describe all the invariant probability measures and to find their
stability properties. The first step to apply Theorem 2.8 is to specify the values of Ĥα

and Ψ̂α.

Computation of Ĥα(z) and Ψ̂α(z)

Let α > 0. Recall that Hα(t) is defined by (2.5) and that Ψα(t) is defined by (2.6).
Let:

∀θ ∈ [0, 1), w(θ) := θ +
θ2

2
+ log(1− θ) = −

∑

k≥3

θk

k
.

In this section, we prove that:

Proposition 4.2. Let ψ(z, x) := 2−2(1−x)z−2xz−(1−x)zx2(1−z)z
(1−x)(1−z)z(1+z) . It holds that for all ℜ(z) >

−α2:

Ĥα(z) =

∫ 1

0

(1− x)z−1eα
2w(x)dx

and

Ψ̂α(z) = α2

∫ 1

0

ψ(z, x)eα
2w(x)dx.
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To proceed, we introduce some notations. First, recall that Kα(t) = − d
dtHα(t). We

also consider

∀θ ∈ [0, 1),
̂
H

[θ]
α (z) :=

∫ ∞

0

e−ztHα(t− log(1− θ))dt,

̂
K

[θ]
α (z) :=

∫ ∞

0

e−ztKα(t− log(1− θ))dt.

Lemma 4.3. The following identities hold:

̂
H

[θ]
α (z) = (1− θ)−z

∫ 1

θ

(1− x)z−1eα
2w(x)dx,

̂
K

[θ]
α (z) = eα

2w(θ) − z
̂
H

[θ]
α (z).

In addition, we have

eα
2w(θ) = (z + α2)

̂
H

[θ]
α (z)− α2

∫ 1

θ

(
1− x

1− θ

)z

(1 + x)eα
2w(x)dx.

Proof. We have ϕα
t (0) = α(1− e−t) and so

Hα(t) = exp

(
−
∫ t

0

α2(1− e−u)2du

)
= exp

(
α2[

3

2
+
e−2t

2
− 2e−t − t]

)
.

Therefore, we find that

∀x ∈ [0, 1), Hα(− log(1− x)) = eα
2w(x).

So, the change of variable x = 1− e−t shows that

̂
H

[θ]
α (z) = (1− θ)−z

∫ ∞

− log(1−θ)

e−ztHα(t)dt

= (1− θ)−z

∫ 1

θ

(1− x)z−1eα
2w(x)dx.

This proves the first equality. The second equality is obtained by an integration by parts,
using that d

dtHα(t− log(1− θ)) = −Kα(t− log(1− θ)). To obtain the last identity, we note
that:

− d

dx

[
(1− x)zeα

2w(x)
]
= (z + α2)(1 − x)z−1eα

2w(x) − α2(1− x)z(1 + x)eα
2w(x).

We then integrate this equality from x = θ to x = 1. This gives the result.

Using this Lemma, we can finally deduce the expression of Ψ̂α:

Proof of Proposition 4.2. For u ∈ R+, let θ(u) := 1 − e−u. Recall that Ψα(t) is given by
(2.6). Therefore, it holds that

Ψ̂α(z) = α

∫ ∞

0

1

b(ϕα
u(0)) + α

[∫ ∞

0

e−ztKα(t+ u)dt− f(ϕα
u(0))

∫ ∞

0

e−ztHα(t+ u)dt

]
du

=

∫ ∞

0

eu
[
̂
K

[θ(u)]
α (z)− α2(θ(u))2

̂
H

[θ(u)]
α (z)

]
du

=

∫ 1

0

(1− θ)−2

[
̂
K

[θ]
α (z)− α2θ2

̂
H

[θ]
α (z)

]
dθ.
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We made the change of variable θ = 1− e−u. We now use Lemma 4.3 and find that

̂
K

[θ]
α (z)− α2θ2

̂
H

[θ]
α (z) = α2(1− θ2)

̂
H

[θ]
α (z)− α2

∫ 1

θ

(
1− x

1− θ

)z

(1 + x)eα
2w(x)dx.

=

∫ 1

θ

[
α2(1− θ2)

(1 − x)z−1

(1− θ)z
− α2

(
1− x

1− θ

)z

(1 + x)

]
eα

2w(x)dx.

Therefore, we find that

Ψ̂α(z) = α2

∫ 1

0

1− θ2

(1− θ)z

∫ 1

θ

(1− x)z−1eα
2w(x)dxdθ

− α2

∫ 1

0

1

(1− θ)z

∫ 1

θ

(1− x)z(1 + x)eα
2w(x)dxdθ.

To obtain the stated result, it suffices to integrate by parts this equality.

4.1 Description of the invariant probability measures

The following proposition gives the number of invariant measures of the non-linear
equation (1.1). This result is conjectured to be true in [20, Section 7.2.3].

0 1 2 3 4 5

2

2.5

3

3.5

α

J
(α

)
=

α
γ
(α

)

Graph of the function α 7→ J(α) := α
γ(α) .

J(α)

(α∗, J(α∗))

Figure 1: Plot of the function α 7→ J(α) := α
γ(α) , for b(x) = −x and f(x) = x2. We prove

in Proposition 4.4 that this function is decreasing on (0, α∗] and increasing on [α∗,∞).

Proposition 4.4. Let f(x) = x2 and b(x) = −x. There exists α∗ > 0 such that the
function α 7→ α

γ(α) is decreasing on (0, α∗] and increasing on [α∗,∞). Moreover, one has

lim
α↓0

α

γ(α)
= +∞, and lim

α→∞

α

γ(α)
= +∞.

Let J∗ := α∗

γ(α∗)
.We deduce that

1. For J ∈ [0, J∗), δ0 is the unique invariant probability measure of (1.1).

2. For J ∈ (J∗,∞), (1.1) has three invariant probability measures: {δ0, ν∞α1
, ν∞α2

}.
with α1 < α∗ < α2.

3. For J = J∗, (1.1) has two invariant probability measures: δ0 and ν∞α∗
.
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Proof. The graph of the function α 7→ α
γ(α) is plotted Figure 1. Define

∀α ≥ 0, V (α) := α

∫ 1

0

(1 + x)eα
2w(x)dx. (4.1)

Claim It holds that for all α > 0

α

γ(α)
=

1

α
+ V (α). (4.2)

Proof. First, note that α
γ(α) = αĤα(0). In addition, by Lemma 4.3 with θ = 0 and z = 0,

we find that Ĥα(0) =
1
α2 + V (α)/α.

Define for all x ∈ [0, 1)

A(x) :=
−4w(x)

x3
− (1 + x) =

1

3
+ 4x2

∑

k≥0

xk

k + 5
.

Claim It holds that

V ′(α) =

∫ 1

0

A(x)eα
2w(x)dx.

In particular V is strictly increasing on R+.
Proof. We have

V ′(α) =

∫ 1

0

(1 + x)eα
2w(x)dx+ 2α2

∫ 1

0

(1 + x)w(x)eα
2w(x)dx.

Let

∀x ∈ (0, 1), θ(x) :=
(1 + x)w(x)

w′(x)
.

We have w(x)
w′(x) = − (1−x)w(x)

x2 and so θ(x) = − 1−x2

x2 w(x). In particular, θ can be extended

to a C1([0, 1]) function with θ(0) = θ(1) = 0. Integrating par parts, we find that

2α2

∫ 1

0

(1 + x)w(x)eα
2w(x)dx = 2α2

∫ 1

0

θ(x)w′(x)eα
2w(x)dx

= −2

∫ 1

0

θ′(x)eα
2w(x)dx.

Moreover, we have θ′(x) = 2
x3w(x) + (1 + x) and so (1 + x)− 2θ′(x) = A(x).

For all α ≥ 1, we have

V ′(α) ≥ 1

3

∫ 1

0

eα
2w(x)dx ≥ 1

6α
α

∫ 1

0

(1 + x)eα
2w(x)dx =

1

6α
V (α).

Consequently, we have ∀α ≥ 1, V (α) ≥ V (1)α1/6. Using (4.2), we deduce that

lim
α↓0

α

γ(α)
= +∞, and lim

α→∞

α

γ(α)
= +∞.

It remains to study the variations of α 7→ α
γ(α) . Using (4.2), we have

d

dα

α

γ(α)
=
α2V ′(α) − 1

α2
=
W (α2)− 1

α2
, with W (α) := α

∫ 1

0

A(x)eαw(x)dx.
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Claim The function W is increasing on R+.
Proof. Let D(x) := A(x)w(x)

w′(x) . We have

W ′(α) =

∫ 1

0

A(x)eαw(x)dx+

∫ 1

0

D(x)αw′(x)eαw(x)dx

=

∫ 1

0

[A(x) −D′(x)]eαw(x)dx.

To conclude it suffices to show that for all x ∈ [0, 1), A(x) − D′(x) ≥ 0, which follows
from the explicit formula satisfied by A and D.

Finally, we have limα→∞W (α) = +∞. This follows from

W (α2) = α2V ′(α) ≥ α2 1

6α
V (1)α1/6.

Putting altogether, we deduce the result.

4.2 Conjecture on their stability

Let J ∈ (J∗,∞). By Proposition 4.4, (1.1) has exactly three invariant probability
measures: {δ0, ν∞α1

, ν∞α2
} with α1 < α∗ < α2. It is known that δ0 is attractive, see [20].

The question of the stability of ν∞α1
and ν∞α2

is more delicate. In view of Theorem 2.8, the
stability is determined by the location of the zeros of

F (α, z) := Ĥα(z)− Ψ̂α(z).

The explicit expression of F (α, z) is given in Proposition 4.2 above. Recall the definition
of λ′α (2.7):

−λ′α = sup{ℜ(z); F (α, z) = 0}.
Conjecture 4.5. We conjecture that λ′α1

> 0 and that λ′α2
< 0.

In view of Theorem 2.8, this suggests that ν∞α1
is unstable and that ν∞α2

is stable. This
conjecture is motivated by numerical investigations, see Figure 2, and by the following
analysis for α close to α∗. First we note that for all α > 0, it holds that:

F (α, 0) =
d

dα

α

γ(α)
.

In particular, for α = α∗, we have
F (α∗, 0) = 0.

The function (α, z) 7→ F (α, z) is C1 in the neighborhood of (α∗, 0). In addition, we find
that

∂zF (α∗, 0) > 0 and ∂αF (α∗, 0) > 0.

Therefore, the implicit function theorem applies, and gives the existence of a function
α 7→ z(α) in the neighborhood of α∗ such that F (α, z(α)) = 0. In addition, we have

d

dα
z(α∗) = −∂αF (α∗, 0)

∂zF (α∗, 0)
< 0.

This implies that for α < α∗, α sufficiently close to α∗, it holds that z(α) > 0 and so
λ′α < 0. Note however that when α < α∗, we have z(α) < 0 but this local analysis is
not sufficient to conclude that λ′α > 0. Indeed, there might be other solutions to the
equation F (α, z) = 0 with ℜ(z) ≥ 0 and |z| far from zero.
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(a) F (α1, z) = 0
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(b) F (α2, z) = 0

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

ν
∞ α
1
(x
)

(c) ν∞

α1
(x)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

x

ν
∞ α
2
(x
)

(d) ν∞

α2
(x)

Figure 2: Let f(x) = x2 and b(x) = −x. For J = 2.12, the invariant probability measures
of (1.1) are {δ0, ν∞α1

, ν∞α2
} with α1 ≈ 1.108 and α2 ≈ 1.7383. The shape of the non-trivial

invariant probability measures ν∞α1
and ν∞α2

are reported in Figures 2c and 2d respec-
tively. Figure 2a, we plot the curves ℜF (α1, z) = 0 (in blue) and ℑF (α1, z) (in red). The
two curves intersect at a zero of F (α1, ·). We find numerically that F (α1, 0.3065) ≈ 0.
This suggests that ν∞α1

is unstable. For α = α2, we find in Figure 2b that the zeros of
z 7→ F (α2, z) have negative real part, suggesting that ν∞α2

is stable.
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