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Abstract

We study the long time behavior of the solution to some McKean–Vlasov stochastic differential
equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic
of the membrane potential of a spiking neuron in a large network. We prove that for a small enough
interaction parameter, any solution converges to the unique (in this case) invariant probability measure.
To this aim, we first obtain global bounds on the jump rate and derive a Volterra type integral equation
satisfied by this rate. We then replace temporary the interaction part of the equation by a deterministic
external quantity (we call it the external current). For constant current, we obtain the convergence to
the invariant probability measure. Using a perturbation method, we extend this result to more general
external currents. Finally, we prove the result for the non-linear McKean–Vlasov equation.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

We study a model of network of neurons. For each N ∈ N, we consider a Piecewise-
Deterministic Markov Process (PDMP) XN

t = (X1,N
t , . . . , X N ,N

t ) ∈ RN
+

. For i ∈ {1, . . . , N },
X i,N

t models the membrane potential of a neuron (say neuron i) in the network. It emits spikes
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at random times. The spiking rate of neuron i at time t is f (X i,N
t ): it only depends on the

potential of neuron i . When the neuron i emits a spike, say at time τ , its potential is reset
(X i,N

τ+ = 0) and the potential of the other neurons increases by an amount J
N , where the

connection strength J ≥ 0 is fixed:

∀ j ̸= i, X j,N
τ+

= X j,N
τ−

+
J
N
.

Between two spikes, the potentials evolve according to the one dimensional equation

d X i,N
t

dt
= b(X i,N

t ).

The functions b and f are assumed to be smooth. This process is indeed a PDMP, in particular
Markov (see [10]). Equivalently, the model can be described using a system of SDEs driven by
Poisson measures. Let (Ni (du, dz))i=1,...,N be a family of N independent Poisson measures on
R+×R+ with intensity measure dudz. Let (X i,N

0 )i=1,...,N be a family of N random variables on
R+, i.i.d. of law ν and independent of the Poisson measures. Then (X i,N ) is a càdlàg process
solution of coupled SDEs:

∀i, X i,N
t =X i,N

0 +

∫ t

0
b(X i,N

u )du +
J
N

∑
j ̸=i

∫ t

0

∫
R+

1
{z≤ f (X j,N

u−
)}N

j (du, dz)

−

∫ t

0

∫
R+

X i,N
u− 1

{z≤ f (X i,N
u−

)}N
i (du, dz).

. (1)

When the number of neurons N goes to infinity, it has been proved (see [11,18]) for specific
linear functions b and under few assumptions on f that X1,N

t — i.e. the first coordinate of the
solution to (1) — converges in law to the solution of the McKean–Vlasov SDE:

X t = X0 +

∫ t

0
b(Xu)du + J

∫ t

0
E f (Xu)du −

∫ t

0

∫
R+

Xu−1{z≤ f (Xu−)}N(du, dz), (2)

where, L(X0) := L(X1,N
0 ) = ν and N is a Poisson measure on R+ ×R+ with intensity measure

dudz. The measure N and X0 are independent.
Eq. (2) is a mean-field equation and is the current object of interest. Note that the drift part

of (2) involves the law of the solution in the term E f (Xu): the equation is non-linear in the
sense of McKean–Vlasov. Here, we study existence and uniqueness of the solution of (2) and
its long time behavior.

Let ν(t, ·) be the law of X t at time t ≥ 0. It is a weak solution of the following
Fokker–Planck PDE:⎧⎪⎪⎨⎪⎪⎩

∂

∂t
ν(t, x) = −

∂

∂x
[(b(x) + Jrt )ν(t, x)] − f (x)ν(t, x), x > 0

ν(0, ·) = ν, ν(t, 0) =
rt

b(0) + Jrt
, rt =

∫
∞

0
f (x)ν(t, dx).

(3)

This model with a noisy threshold is known in the physic literature as the “Escape Noise”
model (see [19, Chap. 9] for references and biological considerations). From a mathematical
point of view, it has been first studied in [11] and has been the object of further developments
in [18]. The function f : R+ → R+ can be considered of the type f (x) = ( x

ϑ
)ξ for large ξ > 0

and some soft threshold ϑ > 0. In this situation, if the potential of the neuron is equal to x
then the neuron has a small probability to spike between t and t + dt if x < ϑ and a large
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probability if x > ϑ . Such a choice of f mimics the standard integrate-and-fire model with a
fixed (deterministic) threshold around ϑ .

Results on the existence of solution to (2), in a slightly different context (in particular, with
b(x) ∼∞ −κx for κ ≥ 0), have been obtained in [11]: the authors explored the case where
the initial condition ν is compactly supported. This property is preserved at any time t > 0.
So, the behavior of the solution with a rate function f locally Lipschitz continuous is similar
to the case with a function f globally Lipschitz continuous. When the initial condition is not
compactly supported, the situation is more delicate. In [18], the authors proved existence and
path-wise uniqueness of the solution to (2) (in a slightly different setting than ours) using an
ad-hoc distance.

Note that the global existence results obtained for this model differ from those obtained
for the “standard” integrate-and-fire model with a fixed deterministic threshold. This situation,
studied for instance in [4,6,12,13], corresponds (informally) to the choice f (x) = +∞1{x≥ϑ},
ϑ > 0 being the fixed threshold. In these papers, a diffusion part is included in the modeling.
In [4], the authors proved that a blow-up phenomenon appears when the law of the initial
condition is concentrated close to the threshold ϑ : the jump rate of the solution diverges to
infinity in finite time. Here, the situation is completely different: the jump rate is uniformly
bounded in time (see Theorem 5). In [4], the authors have obtained results on the stability of
the solution for the diffusive model with a deterministic threshold (see also [5] for a variant).

Very little is known about the long time behavior of the solutions to (2). One can study
it by considering the long time behavior of the finite particles system (1) and then apply the
propagation of chaos to extend the results to the McKean–Vlasov equation (2). This strategy
has been developed in [29,2] for diffusive problems. The long time behavior of the particles
system (1) has been studied in [16,22] (again in a slightly different setting but the methods
could be adapted to our case): the authors proved that the particles system is Harris-ergodic
and consequently converges weakly to its unique invariant probability measure. However,
transferring the long time behavior of the particles system to the McKean–Vlasov equation
is possible if the propagation of chaos holds uniformly in time. In [11,18], the propagation of
chaos is only proved on compact time interval [0, T ] and their estimates diverge as T goes to
infinity. Because Eq. (2) may have multiple invariant probability measures, there is no hope in
general to prove such uniform propagation of chaos.

Coupling methods are also used to study the long time behavior of SDEs. In [1], the authors
have studied the TCP (a linear PDMP) which is close to (2). The size of the jumps is −x/2 in
the TCP and −x in our setting, x being the position of the process just before the jump. The
main difference is the non-linearity: we failed to adapt their methods when the interactions are
non-zero (J > 0).

Butkovsky studied in [3] the long time behavior of some McKean–Vlasov diffusion SDE of
the form:

∀t ≥ 0, X t = X0 +

∫ t

0
[b1(Xu) + ϵb2(Xu, µu)] du + Wt , µu = L(Xu), (4)

where (Wt )t≥0 is a Brownian motion. Here the drift terms b1 and b2 are assumed to be globally
Lipschitz and b2 is assumed uniformly bounded with respect to its two parameters. The author
proved that if the parameter ϵ is small enough, (4) has a unique invariant probability measure
which is globally stable. The case ϵ > 0 (and small) is treated as a perturbation of the case
ϵ = 0 using a Girsanov transform. It could be interesting to see how this method could be
adapted to SDE driven by Poisson measures, but we did not pursue this path.
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Another approach consists in studying the non-linear Fokker–Planck equation (3). Such
non-linear transport equations with boundary conditions have been studied in the context of
population dynamics (see for instance [21,28,30,26]). In [21], the authors have characterized the
stationary solutions of the PDE and found a criterion of local stability for stationary solutions.
They derived a Volterra integral equation and used it to obtain the stability criteria. More
recently, [24,25,23] have re-explored these models for neuroscience applications (see [8,7] for
a rigorous derivation of some of these PDEs using Hawkes processes).

PDE (3) differs from theirs in the sense that we have a non-linear transport term (theirs
is constant and equal to one) and our boundary condition is more complex. The long time
behavior of the PDE (3) has been successfully studied in [18] and in [14] in the case where
b ≡ 0. In this situation, one can simplify the PDE (3) with a simpler boundary condition

ν(t, 0) =
1
J
.

The authors proved that if the density of the initial condition satisfies this boundary condition
and regularity assumptions, then ν(t, ·) converges to the density of the invariant probability
measure as t goes to infinity. The convergence holds in L1 or in stronger norms (see [14]). For
b ̸= 0, the boundary condition is more delicate and their methods cannot be easily applied.

Actually the long time behavior of the solution to (2) may be remarkably intricate.
Depending on the choice of f , b and J , Eq. (2) may have multiple invariant probability
measures. Even if the invariant probability measure is unique, it is not necessarily a stable
one and oscillations may appear (see Examples at the end of Section 2). In [15], the authors
have numerically illustrated this phenomenon in a setting close to ours.

Our main result describes the long time behavior of the solution to (2) in the weakly
connected regime (Theorem 9). If the connection strength J is small enough, we prove that
(2) has a unique invariant probability measure which is globally stable. We give the explicit
expression of this non-trivial invariant distribution and starting from any initial condition X0,
we prove the convergence in law of X t to it, exponentially fast, as t goes to infinity. We argue
that this result is very general: it does not depend on the explicit shape of the functions f or b.
For stronger connection strengths J , such a result cannot hold true in general as Eq. (2) may
have multiple invariant probability measures.

Note that we prove convergence in law, which is weaker than convergence in L1. On the
other hand, we require very few on the initial condition, in particular, we do not assume the
existence of a density for the initial condition in Theorem 9. We also provide a new proof for
the existence and uniqueness of the solution to (2), based on a Picard iteration scheme (see
Theorem 5). As in [18], we do not require the initial condition to be compactly supported.
One of the main difficulty to study (2) (or its PDE version (3)) is that there is no simple
autonomous equation for the jump rate t ↦→ E f (X t ). To overcome this difficulty, we introduce
a “linearized” version of (2) for which we can derive a closed equation of the jump rate.

Fix a s ≥ 0 and let (au)u≥s be a continuous deterministic non-negative function, called
the external current. It replaces the interaction JE f (Xu) in (2). We consider the linear
non-homogeneous SDE:

∀t ≥ s, Y s,ν,(a.)
t = Y s,ν,(a.)

s +

∫ t

s
b(Y s,ν,(a.)

u )du +

∫ t

s
audu

−

∫ t

s

∫
R+

Y s,ν,(a.)
u− 1

{z≤ f (Y s,ν,(a.)
u−

)}N(du, dz),
(5)
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where L(Y s,ν,(a.)
s ) = ν. Under quite general assumptions on b and f , this SDE has a path-wise

unique solution (see Lemma 14). We denote the jump rate of this SDE by:

∀t ≥ s, r ν(a.)(t, s) := E f (Y s,ν,(a.)
t ). (6)

Moreover, taking s = 0 and Y 0,ν,(a.)
0 = X0, it holds that (Y 0,ν,(a.)

t )t≥0 is a solution to (2) if it
satisfies the closure condition

∀t ≥ 0, at = Jr ν(a.)(t, 0). (7)

Conversely, any solution to (2) is a solution to (5) with at = JE f (X t ). We prove that the
function r ν(a.) satisfies a Volterra integral equation

∀t ≥ s, r ν(a.)(t, s) = K ν
(a.)(t, s) +

∫ t

s
K(a.)(t, u)r ν(a.)(u, s)du, (8)

where the kernels K ν
(a.) and K(a.) are explicit in terms of ν, a, b and f (see (18) and (19)).

Our main tool is this Volterra equation: we use it with a Picard iteration scheme to
“recover” the non-linear equation (2). The McKean–Vlasov equation (2), its “linearized” non-
homogeneous version (5), the Fokker–Planck PDE (3) and the Volterra equation (8) are different
ways to investigate this mean-field problem, each of these interpretations having their own
strength and weakness. Here, we use mainly the Volterra equation (8) and the non-homogeneous
SDE (5). To prove that Eq. (2) has a path-wise unique solution, we rely on the Volterra equation
(8) and show that the following mapping:

(at )t≥0 ↦→ Jr ν(a.)(., 0) := [t ↦→ JE f (Y 0,ν,(a.)
t )], (9)

is contracting on C([0, T ],R+) for all T > 0. It then follows that the fixed point of this mapping
satisfies the closure condition (7) and can be used to define a solution to (2). Conversely any
solution to (2) defines a fixed point of this mapping and one proves strong uniqueness for (2).

Finally, we prove our main result concerning the long time behavior of the solution to (2).
Let us detail the structure of the proof. First, we give in Proposition 30 the long time behavior of
the solution to the linear equation (5) with a constant current (at ≡ a). Any solution converges
in law to a unique invariant probability measure ν∞

a (Proposition 26). In that case, the Volterra
equation (8) is of convolution type and it is possible to study finely its solution using Laplace
transform techniques. Second, we prove, for small J , the uniqueness of a constant current a∗

such that

∀t ≥ 0, a∗
= JE f (Y 0,ν∞a∗,a

∗

t ).

Third, we extend the previous convergence result to non-constant currents (at ) satisfying

|at − a∗
| ≤ Ce−λt . (10)

Using a perturbation method, we prove that

Y 0,ν,(a.)
t

L
−→
t→∞

ν∞

a∗ .

Fourth, in Theorem 9, we give the long time behavior of the solution to the non-linear equation
(2) for small J . Here, we use a fixed point argument.

The layout of the paper is as follows. Our main results are given in Section 2. In Section 3,
we gather technical results. In Section 4, we study the non-homogeneous linear equation (5)
and derive the Volterra equation satisfied by the jump rate. In Section 5, we characterize the
invariant probability measures of (2). In Section 7 we study the long time behavior of the
solution to (5) with a constant current a. In Section 8, we introduce the perturbation method.
Finally Section 9 is devoted to the proof of our main result (Theorem 9).
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2. Notations and results

Let us introduce some notations and definitions. For s ≥ 0 and a probability measure ν on
R+, let Y s,ν,(a.)

s be a ν-distributed random variable, independent of a Poisson measure N(du, dz)
on R+ ×R+ of intensity measure dudz. We consider the canonical filtration (F s

t )t≥s associated
to the Poisson measure N and to the initial condition Y s,ν,(a.)

s , that is the completion of

σ {Y s,ν,(a.)
s ,N([s, r ] × A) : s ≤ r ≤ t, A ∈ B(R+)}.

Definition 1. Let s ≥ 0 and consider (at ) : [s,∞) → R+ a measurable locally integrable
function (∀t ≥ s,

∫ t
s audu < ∞).

• A process (Y s,ν,(a.)
t )t≥s is said to be a solution of the non-homogeneous linear equation (5)

with a current (at )t≥s if the law of Y s,ν,(a.)
s is ν, (Y s,ν,(a.)

t )t≥s is (F s
t )t≥s-adapted, càdlàg,

a.s. ∀t ≥ s,
∫ t

s f (Y s,ν,(a.)
u )du < ∞ and (5) holds a.s.

• An (F0
t )t≥0-adapted càdlàg process (X t )t≥0 is said to solve the non-linear SDE (2) if

t ↦→ E f (X t ) is measurable locally integrable and if (X t )t≥0 is a solution of (5) with
s = 0, Y 0,ν,(a.)

0 = X0 and ∀t ≥ 0, at = JE f (X t ).

Let t ≥ s ≥ 0. We denote by Y s,ν,(a.)
t a solution to the linear non-homogeneous SDE (5)

driven by (at )t≥s ∈ C([s,∞),R+) starting with law ν at time s. We denote its associated
jump rate by: r ν(a.)(t, s) := E f (Y s,ν,(a.)

t ). For any measurable function g, we write ν(g) :=∫
∞

0 g(x)ν(dx) = Eg(Y s,ν,(a.)
s ) whenever this integral makes sense.

Between its random jumps, the SDE (5) is reduced to a non-homogeneous ODE. Let us
introduce its flow ϕ

(a.)
t,s (x), which by definition is the solution of:

∀t ≥ s,
d
dt
ϕ

(a.)
t,s (x) = b(ϕ(a.)

t,s (x)) + at (11)

ϕ(a.)
s,s (x) = x .

If at ≡ a, we denote ϕa
t (x) = ϕ

(a.)
t,0 (x).

Assumptions 2. We assume that b : R+ → R is a locally Lipschitz function with b(0) > 0
and that b is bounded from above:

∃Cb ≥ 0 : ∀x ≥ 0, b(x) ≤ Cb. (12)

We assume moreover that there is a positive constant Cϕ such that for all (at )t≥0, (dt )t≥0 ∈

C(R+,R+) we have

∀x ≥ 0, ∀s ≤ t, |ϕ
(a.)
t,s (x) − ϕ

(d.)
t,s (x)| ≤ Cϕ

∫ t

s
|au − du |du. (13)

The assumption b(0) > 0 implies that for all x, t, s ∈ R+, we have ϕ(a.)
t,s (x) ∈ R+.

Assumptions 3. We assume that f : R+ → R+ is a C1 convex increasing function with
f (0) = 0 and satisfies:

3.1. there exists a constant C f such that

∀x, y ≥ 0, f (x+y) ≤ C f (1+ f (x)+ f (y)) and f ′(x+y) ≤ C f (1+ f ′(x)+ f ′(y)).
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3.2. for all θ ≥ 0, supx≥0{θ f ′(x) − f (x)} < ∞.
Define ψ(θ ) := supx≥0{θ f ′(x) −

1
2 f 2(x)} < ∞. We also assume that

lim
θ→+∞

ψ(θ )
θ2 = 0.

3.3. Finally we assume that there is a constant Cb, f > 0 such that

∀x ≥ 0, |b(x)| ≤ Cb, f (1 + f (x)).

Note that these assumptions ensure that f (x) > 0 for all x > 0.

Assumptions 4. We assume that the law of the initial condition is a probability measure ν
satisfying ν( f 2) < ∞.

Let us give our main results.

Theorem 5. Under Assumptions 2, 3, 4, the non-linear SDE (2) has a path-wise unique
solution (X t )t≥0 in the sense of Definition 1. Furthermore, there is a finite constant r̄ > 0
(only depending on b, f and J ) such that:

sup
t≥0

E f (X t ) ≤ max(r̄ ,E f (X0)), lim sup
t→∞

E f (X t ) ≤ r̄ .

The upper-bound r̄ can be chosen to be an increasing function of J .

Notation 6. Denote for all a ≥ 0 the probability measure

ν∞

a (dx) :=
γ (a)

b(x) + a
exp

(
−

∫ x

0

f (y)
b(y) + a

dy
)
1{x∈[0,σa ]}dx, (14)

where γ (a) is the normalization

γ (a) :=

[∫ σa

0

1
b(x) + a

exp
(

−

∫ x

0

f (y)
b(y) + a

dy
)

dx
]−1

. (15)

The upper bound σa of the support of ν∞
a is given by σa := limt→∞ ϕ

a
t (0) ∈ R∗

+
∪ {+∞}.

Remark 7.

1. For all a ≥ 0, γ (a) = ν∞
a ( f ).

2. We prove in Proposition 26 that for any a ≥ 0, ν∞
a is the unique invariant probability

measure of (5) with at ≡ a.

Proposition 8. The probability measure ν∞
a is an invariant measure of (2) iff

a
γ (a)

= J. (16)

Moreover, define Jm := sup{J0 ≥ 0 : ∀J ∈ [0, J0] Eq. (16) has a unique solution}, then
Jm > 0. Consequently, for all 0 ≤ J < Jm the non-linear process (2) has a unique invariant
probability measure.

We now state our main result: the convergence to the unique invariant probability measure
for weak enough interactions.
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Theorem 9. Under Assumptions 2, 3, 4, there exist strictly positive constants J ∗ and λ (both
only depending on b and f ) satisfying

0 < J ∗ < Jm, 0 < λ < f (σ0),

(Jm and σ0 are defined in Proposition 8) and such that for any 0 ≤ J ≤ J ∗, there is a constant
D > 0 such that:

∀t ≥ 0, |E f (X t ) − γ (a∗)| ≤ De−λt .

Here, (X t )t≥0 is the solution of the non-linear SDE (2) starting with law ν and a∗ is the unique
solution of (16). The constant D only depends on b, f , E f (X0), J and λ.

Moreover, it holds that X t converges in law to ν∞

a∗ at an exponential speed. If φ : R+ → R
is a bounded Lipschitz-continuous function, it holds that

∃D′ > 0,∀t ≥ 0, |Eφ(X t ) − ν∞

a∗ (φ)| ≤ D′e−λt ,

where the constant D′ only depends on b, f, J, ν, λ and φ through its infinite norm and its
Lipschitz constant.

Note that in Theorem 9, the unique invariant probability measure is globally stable: for weak
enough interactions, starting from any initial condition, the system converges to its steady state.

Examples

Given the following constants p ≥ 1, µ > 0 and κ ≥ 0, define, for all x ≥ 0:

f (x) := x p, b(x) = µ− κx .

Then (b, f ) satisfies Assumptions 2 and 3. In that case, the flow is given by

ϕ
(a.)
t,s (x) = xe−κ(t−s)

+
µ

κ
[1 − e−κ(t−s)] +

∫ t

s
e−κ(t−u)audu.

We have ∀x, y ∈ R+, f (x+y) ≤ 2p−1( f (x)+ f (y)). A similar estimate holds for f ′. Moreover
ψ(θ ) =

1
2θ

2p
p+1 (p − 1)

p−1
p+1 (1 + p), so Assumption 3.2. holds.

Consequently, Theorem 9 applies. When κ > 0, the invariant probability measures are
compactly supported and not necessarily unique. Consider for instance b(x) = µ− x , f (x) =

x2. If µ is small enough, a numerical study shows that there exists 0 < a1 < a2 < ∞ such that
the function a ↦→

a
γ (a) is increasing on [0, a1], decreasing on [a1, a2] and finally increasing on

[a2,∞). Thus, if J ∈ (a1, a2), the non-linear equation (2) admits exactly 3 non-trivial invariant
probability measures. A numerical study shows that only two of the three are locally stable
(bi-stability).

Another interesting example is the following. Assume b(x) = 2−2x and f (x) = x10. Then,
a numerical study shows that the function a ↦→

a
γ (a) is increasing on R+ and consequently for

all J ≥ 0, (2) admits a unique invariant probability measure. But if J ∈ [0.7, 1.05] a deeper
numerical analysis shows that the law of the solution of (2) asymptotically oscillates, betraying
that the invariant probability measure is not locally stable. Those examples emphasis on the
fact that the condition J small enough is required for Theorem 9 to hold.

Remark 10. Assumption 2 is crucial to obtain our result on the long time behavior
(Theorem 9). It restricts us to κ ≥ 0. If b(x) = µ − κx with κ < 0 then Assumption 2
does not hold.
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3. Technical notations and technical lemmas

The following standard results on the ODE (11) will be useful all along:

Lemma 11. Assume b satisfies Assumption 2. Then:

1. For all x ≥ 0 and s ≥ 0, the ODE (11) has a unique solution t ↦→ ϕ
(a.)
t,s (x) defined on

[s,∞). This is the flow associated to the drift b and to the external current (at )t≥0.
2. Given (at ) and (dt ) in C(R+,R+), the flow satisfies the following comparison principle:

[∀t ≥ 0, at ≥ dt ] H⇒ [∀x ≥ y ≥ 0, ∀t ≥ s ≥ 0, ϕ(a.)
t,s (x) ≥ ϕ

(d.)
t,s (y)].

3. The flow grows at most linearly with respect to the initial condition:

∀a ≥ 0, ∀x ≥ 0, ∀t ≥ 0, ϕa
t (x) ≤ x + Ca

b t, where Ca
b := Cb + a.

4. The function (t, s) ↦→ ϕ
(a.)
t,s (0) is continuous on {(t, s) : 0 ≤ s ≤ t < ∞}.

5. For any constant current a ≥ 0, the flow converges to a limit as t goes to infinity
(possibly equal to +∞):

∀a ≥ 0, ∀x ≥ 0, lim
t→+∞

ϕa
t (x) := σ x

a ∈ R∗

+
∪ {+∞}. (17)

It holds that infa,x≥0 σ
x
a > 0. Moreover if we define:

σa := inf{x ≥ 0 : b(x) + a = 0} ∈ R∗

+
∪ {+∞},

we have: σ 0
a = σa .

Remark 12.

1. Assumption 3.2. ensures that f does not grow too fast in the sense that for all ϵ > 0,
there is a constant Cϵ > 0, such that: ∀x ≥ 0 f (x) ≤ Cϵeϵx .

2. Using that f is increasing and continuous, we have, for all a ≥ 0:

lim
t→∞

f (ϕa
t (0)) = f (σa) ≥ f (σ0) > 0.

We show that the jump rate r ν(a.) of the non-homogeneous SDE (5), satisfies the Volterra
equation (8) where the kernels K ν

(a.) and K(a.) are defined by

∀t ≥ s ≥ 0, K ν
(a.)(t, s) :=

∫
∞

0
f (ϕ(a.)

t,s (x)) exp
(

−

∫ t

s
f (ϕ(a.)

u,s (x))du
)
ν(dx), (18)

K(a.)(t, s) := K δ0
(a.)(t, s). (19)

Given two “kernels” α and β, it is convenient to follow the notation of [20] and define:

∀t ≥ s, (α ∗ β)(t, s) :=

∫ t

s
α(t, u)β(u, s)du. (20)

The Volterra equation (8) becomes

r ν(a.) = K ν
(a.) + K(a.) ∗ r ν(a.). (21)

Similarly to (18) and (19), we define the kernels

∀t ≥ s, H ν
(a.)(t, s) :=

∫
∞

0
exp

(
−

∫ t

s
f (ϕ(a.)

u,s (x))du
)
ν(dx), H(a.) := H δ0

(a.),

∀x ≥ 0, H x
(a.) := H δx

(a.).

(22)
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From the definition, one can check directly the following relation

1 ∗ K ν
(a.) = 1 − H ν

(a.). (23)

To shorten notations, we shall also write r(a.)(t, s) := r δ0(a.)(t, s).
When the input current (at )t≥0 is constant and equal to a, Eq. (5) is homogeneous and we

write

∀t ≥ 0, Y ν,a
t := Y 0,ν,a

t , r νa (t) := r ν(a.)(t, 0), K ν
a (t) := K ν

(a.)(t, 0), H ν
a (t) := H ν

(a.)(t, 0),

ϕa
t (x) := ϕ

(a.)
t,0 (x).

Note that in this homogeneous situation, the operation ∗ corresponds to the classical con-
volution operation. In particular this operation is commutative in the homogeneous setting
and Eq. (21) is a convolution Volterra equation.

Remark 13. For any (a.) ∈ C(R+,R+) and any probability measure ν, we have

∀t ≥ s ≥ 0 : H ν
(a.)(t, s) ≤ H0(t − s).

4. Study of the non-linear SDE (2) and of its linearized version (5)

4.1. On the non-homogeneous linear SDE (5)

Fix s ≥ 0 and let (at ) : [s,∞) → R+ be a continuous function. We consider the non-
homogeneous linear SDE (5). We always assume that ν, the law of the initial condition Y s,ν,(a.)

s ,
satisfies Assumption 4.

Lemma 14. Grant Assumptions 2, 3, 4. Then the SDE (5) has a path-wise unique solution on
[s,∞) in the sense of Definition 1.

Proof. We give a direct proof by considering the jumps of Y s,ν,(a.)
t and by solving the equation

between the jumps.

• Step 1: we grant Assumptions 2, 4 and assume temporarely that f : R+ → R+ is
measurable and bounded. There exists a constant 0 < K < ∞ such that:

sup
x≥0

f (x) ≤ K .

In this case, the solution of (5) can be constructed in the following way. Define by
induction:

τ0 := inf{t ≥ s :

∫ t

s

∫
R+

1
{z≤ f (ϕ(a.)

u,s (Y s,ν,(a.)
s ))}N(du, dz) > 0},

∀n ≥ 0, τn+1 := inf{t ≥ τn :

∫ t

τn

∫
R+

1
{z≤ f (ϕ(a.)

u,τn (0))}N(du, dz) > 0}.

Using that f ≤ K , it follows that a.s. limn→∞ τn = +∞. We define:

Y s,ν,(a.)
t = ϕ

(a.)
t,s (Y s,ν,(a.)

s )1t∈[s,τ0) +

∑
n≥1

ϕ
(a.)
t,τn (0)1t∈[τn ,τn+1),

and we can directly verify that t ↦→ Y s,ν,(a.)
t is almost surely a solution of (5).
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Uniqueness of Eq. (5) follows immediately from Lemma 11 (point 1): two solutions
have to be equal almost surely before the first jump, from which we deduce that the
two solutions have to jump at the same time. By induction on the number of jumps, the
two trajectories are almost surely equal.

• Step 2: We now come back to the general case where f is not assumed to be bounded
and we adapt the strategy of [18], proof of Proposition 2. We grant Assumptions 2, 3, 4.
We use Step 1 with f K (x) := f (min(x, K )) for some K > 0. Let us denote Y s,ν,(a.),K

t
the solution of (5) where f has been replaced by f K . The boundedness of f K implies
the path-wise uniqueness of Y s,ν,(a.),K

t . We introduce ζK := inf{t ≥ s : |Y s,ν,(a.),K
t | ≥ K },

it holds that Y s,ν,(a.),K
t = Y s,ν,(a.),K+1

t for all t ∈ [s, ζK ] and all K ∈ N. Moreover,
ζK < ζK+1. We define ζ := supK ζK and deduce the existence and uniqueness of a
solution t ↦→ Y s,ν,(a.)

t of (5) on [s, ζ [ such that lim supt→ζ Y s,ν,(a.)
t = ∞ on the event

{ζ < ∞}. But any solution of (5) satisfies for all t ≥ s, Y s,ν,(a.)
t ≤ ϕ

(a.)
t,s (Y s,ν,(a.)

s ) < ∞

a.s. and so it holds that ζ = +∞ a.s. □

Lemma 15. Grant Assumptions 2, 3, 4. Let (Y s,ν,(a.)
t )t≥s be the solution of (5). The functions

t ↦→ E f (Y s,ν,(a.)
t ), t ↦→ E f ′(Y s,ν,(a.)

t ), t ↦→ E f ′(Y s,ν,(a.)
t )|b(Y s,ν,(a.)

t )| and t ↦→ E f 2(Y s,ν,(a.)
t ) are

locally bounded on [s,∞). Moreover, t ↦→ E f (Y s,ν,(a.)
t ) =: r ν(a.)(t, s) is continuous on [s,∞).

Proof. Consider the interval [s, T ] for some T > s. Let A := supt∈[s,T ] at . It is clear that

∀t ∈ [s, T ], a.s. Y s,ν,(a.)
t ≤ Y s,ν,(a.)

s +

∫ t

s
[b(Y s,ν,(a.)

u ) + au]du ≤ Y s,ν,(a.)
s + CT ,

with CT := (Cb + A)(T − s). We used here that b is bounded from above (Assumption 2).
Using that f 2 is non-decreasing and Assumption 3.1., we have:

a.s. f 2(Y s,ν,(a.)
t ) ≤ f 2(Y s,ν,(a.)

s + CT ) ≤ C2
f (1 + f (CT ) + f (Y s,ν,(a.)

s ))2.

Using Assumption 4, we deduce that t ↦→ E f 2(Y s,ν,(a.)
t ) is bounded on [s, T ]. By the Cauchy–

Schwarz inequality, this implies that t ↦→ E f (Y s,ν,(a.)
t ) is also bounded on [s, T ]. Finally,

using Assumptions 3.2. (with θ = 1), there is a constant C such that for all x ≥ 0 f ′(x) ≤

C + f (x). Assumption 3.3. thus yields

∀x ≥ 0 f ′(x)|b(x)| ≤ Cb, f (1 + f (x))(C + f (x)),

and so this proves that t ↦→ E f ′(Y s,ν,(a.)
t )|b(Y s,ν,(a.)

t )| is also bounded on [s, T ]. We now apply
the Itô formula (see for instance Theorem 32 of [27, Chap. II]) to Y s,ν,(a.)

t . It gives for any
ϵ > 0

f (Y s,ν,(a.)
t+ϵ ) = f (Y s,ν,(a.)

t ) +

∫ t+ϵ

t
f ′(Y s,ν,(a.)

u )[b(Y s,ν,(a.)
u ) + au]du

−

∫ t+ϵ

t

∫
∞

0
f (Y s,ν,(a.)

u− )1
{z≤ f (Y s,ν,(a.)

u−
)}N(du, dz).

Taking the expectation, it follows that

E f (Y s,ν,(a.)
t+ϵ ) − E f (Y s,ν,(a.)

t ) =

∫ t+ϵ

t
E f ′(Y s,ν,(a.)

u )[b(Y s,ν,(a.)
u ) + au]du

−

∫ t+ϵ

t
E f 2(Y s,ν,(a.)

u )du,
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from which we deduce that t ↦→ E f (Y s,ν,(a.)
t ) is locally Lipschitz and consequently

continuous. □

4.2. The Volterra equation

Along this section, we grant Assumptions 2, 3, 4. Let s ≥ 0 and (at )t≥s ∈ C([s,∞),R+) be
fixed. We consider (Y s,ν,(a.)

t )t≥s the path-wise unique solution of Eq. (5) driven by the current
(at )t≥s . Following [18], we define:

τs,t := sup{u ∈ [s, t] : Y s,ν,(a.)
u ̸= Y s,ν,(a.)

u− },

the time of the last jump before t , with the convention that τs,t = s if there is no jump during
[s, t]. It follows directly from (5) that:

∀t ≥ s, a.s. Y s,ν,(a.)
t = ϕ

(a.)
t,s (Y s,ν,(a.)

s )1{τs,t =s} + ϕ
(a.)
t,τs,t (0)1{τs,t>s}.

We also define:

∀t ≥ s, Jt :=

∫ t

s

∫
∞

0
1

{z≤ f (Y s,ν,(a.)
u−

)}N(du, dz),

the number of jumps between s and t .

Lemma 16. For all t ≥ u ≥ s ≥ 0, we have

P(Jt = Ju |Fu) = H Y s,ν,(a.)
u

(a.) (t, u) a.s.

where H x
(a.) is given by (22).

Proof. We have {Jt = Ju} = {
∫ t

u

∫
∞

0 1
{z≤ f (Y s,ν,(a.)

θ− )}N(dθ, dz) = 0}. Moreover, Fu and
σ {N([u, θ]× A) : θ ∈ [u, t], A ∈ B(R+)} are independent. It follows from the Markov property
satisfied by (Y s,ν,(a.)

t )t≥s that:

a.s. P(Jt = Ju |Fu) = Φ(Y s,ν,(a.)
u )

where: Φ(x) := P(
∫ t

u

∫
∞

0 1
{z≤ f (ϕ(a.)

θ,u (x))}N(dθ, dz) = 0) = H x
(a.)(t, u). □

Lemma 17 (See also [18], Proposition 25). For all t > s, the law of τs,t is given by:

L(τs,t )(du) = H ν
(a.)(t, s)δs(du) + r ν(a.)(u, s)H(a.)(t, u)1{s<u<t}du.

Proof. First, from Lemma 16, it follows that:

P(τs,t = s) = P(Jt = Js) = E(H Y s,ν,(a.)
s

(a.) (t, s)) = H ν
(a.)(t, s).

Let now u ∈ (s, t] and h > 0 be such that: s < u − h < u ≤ t . We have:

P(τs,t ∈ (u − h, u]) = P(Ju > Ju−h, Jt = Ju) = E(1{Ju>Ju−h }P(Jt = Ju |Fu))

= E(1{Ju>Ju−h } H Y s,ν,(a.)
u

(a.) (t, u)).

Let A := supu∈[s,t] au . On the event {Ju > Ju−h}, the process jumps at least once during
(u − h, u] and so, by Lemma 11 (point 2), we have Y s,ν,(a.)

u ∈ [0, ϕ(a.)
u,u−h] ⊂ [0, ϕA

h ]. It follows
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that

|P(τs,t ∈ (u − h, u]) − E(1{Ju>Ju−h } H(a.)(t, u))|

≤ sup
x∈[0,ϕA

h ]
|H x

(a.)(t, u) − H(a.)(t, u)|P(Ju > Ju−h).

From the following Lemma 18, we have:

lim
h↓0

1
h
P(Ju > Ju−h) = r ν(a.)(u, s).

Using Lemma 11 (point 4), x ↦→ H x
(a.)(t, u) is continuous at x = 0. From the continuity of

h ↦→ ϕA
h at h = 0, it yields:

lim
h↓0

1
h

|P(τs,t ∈ (u − h, u]) − E(1{Ju>Ju−h } H(a.)(t, u))| = 0.

Combining the two results, we obtain the stated formula:

lim
h↓0

1
h
P(τs,t ∈ (u − h, u]) = r ν(a.)(u, s)H(a.)(t, u).

This proves the result. □

Lemma 18 (See also [18], Lemma 23). For all u ∈ (s, t] we have:

lim
h↓0

1
h
P(Ju > Ju−h) = r ν(a.)(u, s).

Proof. Again let A := supu∈[s,t] au < ∞. We have:

|hrν(a.)(u, s) − P(Ju > Ju−h)|

≤

⏐⏐⏐hrν(a.)(u, s) − hrν(a.)(u − h, s)
⏐⏐⏐ +

⏐⏐⏐⏐hrν(a.)(u − h, s) − E
∫ u

u−h
f (ϕ(a.)

θ,u−h(Y s,ν,(a.)
u−h ))dθ

⏐⏐⏐⏐
+

⏐⏐⏐⏐E ∫ u

u−h
f (ϕ(a.)

θ,u−h(Y s,ν,(a.)
u−h ))dθ −

[
1 − E exp

(
−

∫ u

u−h
f (ϕ(a.)

θ,u−h(Y s,ν,(a.)
u−h ))dθ

)]⏐⏐⏐⏐
=: ∆1

h + ∆2
h + ∆3

h .

From the continuity of u ↦→ r ν(a.)(u, s) (Lemma 15) it follows that limh↓0
∆1

h
h = 0. Moreover,

∆2
h =

⏐⏐⏐⏐∫ u

u−h
E f (Y s,ν,(a.)

u−h )dθ − E
∫ u

u−h
f (ϕ(a.)

θ,u−h(Y s,ν,(a.)
u−h ))dθ

⏐⏐⏐⏐ .
Assumption 2 gives

∀y ≥ 0, ∀θ ∈ [u − h, u], 0 ≤ ϕ
(a.)
θ,u−h(y) − y ≤ ϕA

h (y) − y ≤ C A
b h.

We deduce that

∆2
h ≤ h

∫ u

u−h
Egh(Y s,ν,(a.)

u−h )C A
b dθ,

with gh(x) := supy∈[0,C A
b h] f ′(x + y) = f ′(x + C A

b h). Using Assumption 3.1., we have

f ′(x + C A
b h) ≤ C f (1 + f ′(C A

b h) + f ′(x)). It follows that Egh(Y s,ν,(a.)
u−h ) ≤ C f (1 + f (C A

b h) +

E f ′(Y s,ν,(a.)
u−h )). The function t ↦→ E f ′(Y s,ν,(a.)

t ) being locally bounded, we deduce that
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lim suph↓0
∆2

h
h = 0. Finally, using that ∀x ≥ 0, |x − (1 − e−x )| ≤ x2 we have

∆3
h ≤ E

(∫ u

u−h
f (ϕ(a.)

θ,u−h(Y s,ν,(a.)
u−h ))dθ

)2

.

Using the Cauchy–Schwarz inequality, we obtain

∆3
h ≤ hE

∫ u

u−h
f 2(ϕ(a.)

θ,u−h(Y s,ν,(a.)
u−h ))dθ ≤ h2E f 2(Y s,ν,(a.)

u−h + C A
b h).

Using ∀x ≥ 0,∀y ∈ [0,C A
b t], f 2(x + y) ≤ C2

f (1+ f (C A
b t)+ f (x))2 (Assumption 3.1.) and the

fact that t ↦→ E f 2(Y s,ν,(a.)
t ) and t ↦→ E f (Y s,ν,(a.)

t ) are locally bounded (as seen in Lemma 15),
one can find a constant Ct such that

∆3
h ≤ Ct h2.

This shows that limh↓0
∆3

h
h = 0. Combining the three results ends the proof. □

Proposition 19 (See also [18], Theorem 12). Grant Assumptions 2, 3, 4 . Let s ≥ 0 and
(at )t≥s ∈ C([s,∞),R+). Let Y s,ν,(a.)

t be the solution of Eq. (5), starting from L(Y s,ν,(a.)
s ) = ν.

Let φ : R+ → R+ be a continuous non-negative function. It holds that

Eφ(Y s,ν,(a.)
t ) =

∫ t

s
φ(ϕ(a.)

t,u (0))H(a.)(t, u)r ν(a.)(u, s)du +

∫
∞

0
φ(ϕ(a.)

t,s (x))H x
(a.)(t, s)ν(dx).

In particular, r ν(a.)(t, s) = E f (Y s,ν,(a.)
t ) solves the Volterra equation (21)

r ν(a.) = K ν
(a.) + K(a.) ∗ r ν(a.).

Proof. We have, for all t ≥ s

Eφ(Y s,ν,(a.)
t ) = Eφ(Y s,ν,(a.)

t )1{τs,t =s} + Eφ(Y s,ν,(a.)
t )1{τs,t>s}

= Eφ(ϕ(a.)
t,s (Y s,ν,(a.)

s ))1{τs,t =s} + Eφ(ϕ(a.)
t,τs,t (0))1{τs,t>s}

:= αt + βt .

Using Lemma 16, it follows that

αt = E[φ(ϕ(a.)
t,s (Y s,ν,(a.)

s ))P(Jt = Js |Fs)] = E[φ(ϕ(a.)
t,s (Y s,ν,(a.)

s ))H Y s,ν,(a.)
s

(a.) (t, s)]

=

∫
∞

0
φ(ϕ(a.)

t,s (x))H x
(a.)(t, s)ν(dx).

Moreover, using Lemma 17, we have βt =
∫ t

s φ(ϕ(a.)
t,u (0))r ν(a.)(u, s)H(a.)(t, u)du. Taking φ = f

we obtain the Volterra equation (21). □

Note that using Lemma 17,
∫ t

s L(τs,t )(du) = 1 gives:

H ν
(a.) + H(a.) ∗ r ν(a.) = 1.

This last formula is interesting by itself but does not characterize the jump rate r ν(a.). We prefer
to work with (21) because, as shown in the next lemma, this Volterra equation admits a unique
solution.

Lemma 20. Let s ≥ 0 be fixed, (at )t≥s ∈ C([s,∞),R+). Then Eq. (21) has a unique
continuous solution t ↦→ r ν(a.)(t, s) on [s,∞).
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Proof. Fix T > s. It is sufficient to prove the existence and uniqueness result on [s, T ]. We
consider the Banach space (C([s, T ],R), ∥·∥∞,T ) and define on this space the following opera-
tor: Γ : r ↦→ K ν

(a.)+K(a.)∗r . Let A := supt∈[s,T ] at , we have: MT
s = sups≤u≤t≤T K(a.)(t, u) < ∞.

This follows from:

∀s ≤ u ≤ t ≤ T, K(a.)(t, u) ≤ f (ϕ(a.)
t,u (0)) ≤ f (C A

b (T − s)) < ∞.

It is clear (using Assumptions 3.1. and 4) that the operator Γ : C([s, T ],R) → C([s, T ],R) is
well defined. Given n ∈ N, the iteration Γ n is an affine operator with linear part Γ n

0 : r ↦→

(K(a.))
∗(n)

∗r . We prove that Γ n is contracting for n large enough, which is equivalent to proving
that Γ n

0 is contracting for n large enough. By induction, it is easily shown that

∀r ∈ C([s, T ],R),∀n ∈ N ∥Γ n
0 (r )∥∞,t := sup

u∈[s,t]
|(Γ n

0 (r ))(u, s)| ≤
∥r∥∞,T (MT

s (t − s))n

n!
.

Consequently ∀r ∈ C([s, T ],R),∀n ∈ N, ∥Γ n
0 (r )∥∞,T ≤

(MT
s (T −s))n

n!
∥r∥∞,T and Γ n

0 is
contracting for n large enough. We deduce that the operator Γ n is also contracting and has
a unique fixed point in C([s, T ],R). It is also a fixed point of Γ . This proves that (21) has a
unique solution in C([s, T ],R). □

We shall need the following well-known result on Volterra equation:

Lemma 21. Consider k, w : R2
+

→ R two continuous kernels. The Volterra equation
x = w + k ∗ x has a unique solution given by x = w + r ∗ w, where r : R2

+
→ R is

the “resolvent” of k, i.e. the unique solution of

r = k + k ∗ r.

Proof. It is clear from the proof of the preceding lemma that both Volterra equations have a
unique solution. Moreover, we have: w+k ∗ (w+r ∗w) = w+k ∗w+ (r −k)∗w = w+r ∗w.
By uniqueness, we deduce that x = w + r ∗ w. □

4.3. The jump rate is uniformly bounded

Lemma 22. Grant Assumptions 2, 3, 4. Let s ≥ 0 and (at )t≥s ∈ C([s,∞),R+). Let Y s,ν,(a.)
t

be the solution of Eq. (5), starting from L(Y s,ν,(a.)
s ) = ν. Then the functions t ↦→ E f ′(Y s,ν,(a.)

t ),
t ↦→ E f ′(Y s,ν,(a.)

t )b(Y s,ν,(a.)
t ) and t ↦→ E f 2(Y s,ν,(a.)

t ) are continuous on [s,∞).

Proof. The proof relies on Proposition 19. Consider the interval [s, T ] for some fixed T >

s ≥ 0 and let A := supt∈[s,T ] at . Let φ ∈ { f ′, f ′b, f 2
}. By Lemma 11 (point 4), the function

(t, u) ↦→ φ(ϕ(a.)
t,u (0))H(a.)(t, u)r ν(a.)(u, s) is uniformly continuous on {(t, u) : s ≤ u ≤ t ≤ T }.

Consequently

t ↦→

∫ t

s
φ(ϕ(a.)

t,u (0))H(a.)(t, u)r ν(a.)(u, s)du is continuous on [s, T ].

The continuity of t ↦→
∫

∞

0 φ(ϕ(a.)
t,s (x))H x

(a.)(t, s)ν(dx) follows from the Dominated Convergence
Theorem. For instance, for φ ≡ f ′, one has

∀t ∈ [s, T ],∀x ≥ 0, f ′(ϕ(a.)
t,s (x)) ≤ f ′(ϕA

t−s(x)) ≤ f ′(x + C A
b (t − s))

≤ C f ( f ′(x) + 1 + f ′(C A
b (T − s))),
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from which the result follows easily using Assumptions 4 and 3.2.. The same method can be
applied for φ(x) := f ′(x)b(x) (using Assumption 3.3.) and for φ(x) := f 2(x). □

Proposition 23. Grant Assumptions 2, 3, 4. Let s, J ≥ 0 be fixed. Given any κ ≥ 0, there is
a constant ā ≥ κ only depending on b, f , J and κ such that:

∀(at )t≥s ∈ C([s,∞),R+),
{

sup
t≥s

at ≤ ā and Jν( f ) ≤ ā
}

H⇒ sup
t≥s

Jr ν(a.)(t, s) ≤ ā.

Moreover, ā can be chosen to be an increasing function of J and κ .

Proof. Assume supt≥s at ≤ ā for some ā > 0 that we specify later. Applying the Itô formula
and taking expectations yields

∀t ≥ s, E f (Y s,ν,(a.)
t ) = E f (Y s,ν,(a.)

s ) +

∫ t

s
E f ′(Y s,ν,(a.)

u )[b(Y s,ν,(a.)
u ) + au]du

−

∫ t

s
E f 2(Y s,ν,(a.)

u )du.

Lemma 22 implies that t ↦→ E f (Y s,ν,(a.)
t ) is C1 and

∀t ≥ s,
d
dt

E f (Y s,ν,(a.)
t ) = E f ′(Y s,ν,(a.)

t )(b(Y s,ν,(a.)
t ) + at ) − E f 2(Y s,ν,(a.)

t ).

Using (12), the Cauchy–Schwarz inequality gives

d
dt

E f (Y s,ν,(a.)
t ) ≤

{
[ā + Cb]E f ′(Y s,ν,(a.)

t ) −
1
2
E f 2(Y s,ν,(a.)

t )
}

−
1
2
E2 f (Y s,ν,(a.)

t )

≤
1
2

[2ψ(ā + Cb) − E2 f (Y s,ν,(a.)
t )],

where in the last line, we used Assumptions 3.2.. Setting M(ā) :=
√

2ψ(ā + Cb) and using the
sign of the right hand side, we conclude that

ν( f ) ≤ M(ā) H⇒ [∀t ≥ s E f (Y s,ν,(a.)
t ) ≤ M(ā)].

To complete the proof, we need to check that for any κ ≥ 0, any J ≥ 0, there is a constant
ā ≥ κ such that J M(ā) ≤ ā. This follows easily from Assumptions 3.2., which gives

lim
θ→∞

J
√

2ψ(θ )
θ

= 0.

It is clear that ā(J ) can be chosen to be a non-decreasing function of J and κ . We deduce that:

[
sup
t≥s

at ≤ ā and Jν( f ) ≤ ā
]

H⇒

⎧⎪⎪⎨⎪⎪⎩
d
dt

E f (Y s,ν,(a.)
t ) ≤

1
2

[
ā2

J 2 − E2 f (Y s,ν,(a.)
t )

]
E f (Y s,ν,(a.)

s ) ≤
ā
J
.

⎫⎪⎪⎬⎪⎪⎭
H⇒ sup

t≥s
Jr ν(a.)(t, s) ≤ ā. □

We have proved that t ↦→ E f (Y s,ν,(a.)
t ) is C1 and bounded on R+. The same methods can

be applied to the non-linear equation (2).

Lemma 24. Grant Assumptions 2, 3, 4. Consider (X t )t≥0 a solution of the non-linear equation
(2) in the sense of Definition 1. Then t ↦→ E f (X t ) ∈ C1(R+,R) and there is a finite constant
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r̄ > 0 (only depending on b, f and J ) such that:

sup
t≥0

E f (X t ) ≤ max(r̄ ,E f (X0)), lim sup
t→∞

E f (X t ) ≤ r̄ .

Moreover, r̄ can be chosen to be an increasing function of J .

Proof. By applying the same argument as in the proof of Lemma 15 it is clear that the functions

t ↦→ E f (X t ), t ↦→ E f ′(X t ), t ↦→ E f 2(X t ) and t ↦→ E|b(X t )| f ′(X t )

are locally bounded. Applying the Itô formula and taking expectations yields

E f (X t ) = E f (X0) +

∫ t

0
E f ′(Xu)b(Xu)du + J

∫ t

0
E f ′(Xu)E f (Xu)du −

∫ t

0
E f 2(Xu)du.

(24)

We deduce that t ↦→ E f (X t ) is continuous. Define for all t ≥ 0, at := E f (X t ). From
Lemma 14, it is clear that:

a.s. ∀t ≥ 0, X t = Y 0,ν,(a.)
t ,

where (Y 0,ν,(a.)
t )t≥0 is the solution of (5) driven by (at )t≥0. In particular, Lemma 22 applies

and the functions t ↦→ E f ′(X t ), t ↦→ E f 2(X t ) and t ↦→ E f ′(X t )b(X t ) are continuous.
From Eq. (24), we deduce that t ↦→ E f (X t ) ∈ C1(R+,R+) and

d
dt

E f (X t ) = E f ′(X t )b(X t ) + JE f ′(X t )E f (X t ) − E f 2(X t ).

We have:

1. E f ′(X t )b(X t ) −
1
4
E f 2(X t ) ≤

1
2

[2CbE f ′(X t ) −
1
2
E f 2(X t )] ≤

1
2
ψ(2Cb), using Eq. (12)

and Assumption 3.2.

2. JE f ′(X t )E f (X t ) −
1
4
E f 2(X t ) ≤ JE f ′(X t )E f (X t ) −

1
4
E2 f (X t )

≤ E f (X t )[JE f ′(X t ) −
1
8
E f (X t ) −

1
8
E f (X t )]

≤ 2β2,

where β := supx≥0 J f ′(x) −
1
8 f (x) < ∞ (by Assumptions 3.2.). We used supy≥0 y(β −

1
8 y) ≤ 2β2 to obtain the last inequality. Note that β is a non-decreasing function of J .

Combining the points 1 and 2 gives

d
dt

E f (X t ) ≤
1
2

[(ψ(2Cb) + 4β2) − E f 2(X t )]. (25)

We define: r̄ :=
√
ψ(2Cb) + 4β2 and deduce that

sup
t≥0

E f (X t ) ≤ max(r̄ ,E f (X0)), lim sup
t→∞

E f (X t ) ≤ r̄ . □

4.4. Existence and uniqueness of the solution of the non-linear SDE: proof of Theorem 5

We now prove that Eq. (2) has a unique strong solution (X t )t≥0. Let J > 0 (the case J = 0
has already been treated in Lemma 14 by choosing (at )t≥0 ≡ 0). Let ν, the initial condition,
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satisfying Assumption 4, be fixed. We grant Assumptions 2 and 3. Let T > 0 be a fixed
horizon time. Thanks to Proposition 23 with κ := max(JE f (X0), J r̄ ), we build the following
application:

Φ : CT
ā → CT

ā
(at )t ↦→ Jr ν(a.)(·, 0), (26)

where CT
ā := {(at )t ∈ C([0, T ],R+) : supt∈[0,T ] at ≤ ā}. The function r ν(a.)(t, 0) := E f (Y 0,ν,(a.)

t )
is defined by Eq. (5) (using s = 0). The constant ā is given by Proposition 23: in particular
ā does not depend on T . We equip CT

ā with the sup norm ∥(at )t∥∞,T := supt∈[0,T ] |at |. The
metric space (CT

ā , ∥ · ∥∞,T ) is complete. We now prove that the application Φ defined by (26)
is contracting. Let (at )t , (dt )t ∈ CT

ā ; we denote by r ν(a.)(t, s) and r ν(d.)(t, s) their corresponding
jump rate, where t belongs to [s, T ]. Both r ν(a.) and r ν(d.) satisfy the Volterra equation (21). It
follows that the difference ∆ := r ν(a.) − r ν(d.) satisfies:

∆ = K ν
(a.) − K ν

(d.) + K(a.) ∗ (r ν(a.) − r ν(d.)) + (K(a.) − K(d.)) ∗ r ν(d.)
= W + K(a.) ∗ ∆ with W := K ν

(a.) − K ν
(d.) + (K(a.) − K(d.)) ∗ r ν(d.)

Consequently, ∆ solves the following non-homogeneous Volterra equation with kernel K(a.)

∆ = W + K(a.) ∗ ∆. (27)

Using Lemma 21, this equation can be solved explicitly in terms of r(a.), the “resolvent” of
K(a.)

∆ = W + r(a.) ∗ W. (28)

Lemma 25. There exists a constant ΘT only depending on T , f , b and ā such that, for all
a, d ∈ CT

ā :

∀ 0 ≤ s ≤ t ≤ T, ∀x ∈ R+, |K δx
(a.) − K δx

(d.)|(t, s) ≤ ΘT (1 + f ′(x) + f (x) + f ′(x) f (x))
∫ t

s
|au − du |du.

Proof. Fix (at ) and (dt ) in CT
ā . We have

|K δx
(a.) − K δx

(d.)|(t, s)

=

⏐⏐⏐⏐ f (ϕ(a.)
t,s (x)) exp

(
−

∫ t

s
f (ϕ(a.)

u,s (x))du
)

− f (ϕ(d.)
t,s (x)) exp

(
−

∫ t

s
f (ϕ(d.)

u,s (x))du
)⏐⏐⏐⏐

≤

⏐⏐⏐ f (ϕ(a.)
t,s (x)) − f (ϕ(d.)

t,s (x))
⏐⏐⏐ exp

(
−

∫ t

s
f (ϕ(a.)

u,s (x))du
)

+ f (ϕ(d.)
t,s (x))

⏐⏐⏐⏐exp
(

−

∫ t

s
f (ϕ(a.)

u,s (x))du
)

− exp
(

−

∫ t

s
f (ϕ(d.)

u,s (x))du
)⏐⏐⏐⏐

=: M + N .

Assumptions 2 and 3.1. together with Lemma 11(2) give

M ≤ | f (ϕ(a.)
t,s (x)) − f (ϕ(d.)

t,s (x))|

≤ f ′(x + C ā
b T )|ϕ(a.)

t,s (x) − ϕ
(d.)
t,s (x)|

≤ C f (1 + f ′(x) + f ′(C ā
b T ))Cϕ

∫ t

s
|au − du |du.



Q. Cormier, E. Tanré and R. Veltz / Stochastic Processes and their Applications 130 (2020) 2553–2595 2571

Furthermore, using that ∀A, B ≥ 0 : |e−A
− e−B

| ≤ |A − B|, we have

N ≤ C f [1 + f (x) + f (C ā
b T )]

∫ t

s
| f (ϕ(a.)

u,s (x)) − f (ϕ(d.)
u,s (x))|du

≤ C f [1 + f (x) + f (C ā
b T )] f ′(x + C ā

b T )Cϕ

∫ t

s

∫ r

s
|au − du |dudr

≤ T CϕC2
f [1 + f (x) + f (C ā

b T )][1 + f ′(x) + f ′(C ā
b T )]

∫ t

s
|au − du |du.

Combining the two estimates, we get the result. □

Proof of Theorem 5. We now write ΘT for any constant that depends only on T , on the initial
condition ν, on b, f , J and on ā and that can change from line to line. By Assumptions 3 and
4, it follows that:

∀(at ), (dt ) ∈ CT
ā , ∀t ∈ [0, T ] : |K ν

(a.) − K ν
(d.)|(t, 0) ≤ ΘT

∫ t

0
|au − du |du.

Moreover, since supt∈[0,T ] r(d.)(t, 0) ≤
ā
J by Proposition 23, we have

|(K(a.) − K(d.)) ∗ r(d.)|(t, 0) =

⏐⏐⏐∫ t

0
(K(a.) − K(d.))(t, u)r(d.)(u)du

⏐⏐⏐
≤

ā
J
ΘT (1 + f ′(0))T

∫ t

0
|au − du |du.

Consequently, there is a constant ΘT such that

∀(at ), (dt ) ∈ CT
ā , ∀t ∈ [0, T ] : |W |(t, 0) ≤ ΘT

∫ t

0
|au − du |du.

Using the formula (28), we deduce that

|∆(t, 0)| ≤|W |(t, 0) +

∫ t

0
r(a.)(t, u)|W |(u, 0)du

≤ΘT (1 + T
ā
J

)
∫ t

0
|au − du |du.

We have proved that there is a constant ΘT such that:

∀(at ), (dt ) ∈ CT
ā ,∀t ∈ [0, T ], ∥Jr ν(a.)(·, 0) − Jr ν(d.)(·, 0)∥∞,t ≤ ΘT

∫ t

0
∥a − d∥∞,udu.

This estimate is sufficient to prove Theorem 5 by a classical Picard/Gronwall argument. We
deduce that Φ defined by (26) has a unique fixed point (a∗

t )t . It is then easy to check that
(Y 0,ν,(a∗.)

t )t∈[0,T ], driven by the current (a∗) and with initial condition Y 0,ν,(a∗.)
0 = X0, defines

a solution of (2) up to time T . This proves existence of a strong solution to (2). Now, if
(X t )t≥0 is a strong solution of (2) in the sense of Definition 1, let ∀t ≥ 0, at := JE f (X t ).
We have supt≥0 at ≤ max(J r̄ , JE f (X0)) ≤ ā and consequently (at )t∈[0,T ] ∈ CT

ā . Moreover,
it is clear that (X t )t≥0 solves (5) with at := JE f (X t ) and Y 0,ν,(a.)

0 := X0. We deduce that
(at ) is the unique fixed point of Φ: ∀t ∈ [0, T ] : at = a∗

t . Consequently, by Lemma 14, we
have: a.s. ∀t ∈ [0, T ] X t = Y 0,ν,(a.)

t . This proves path-wise uniqueness and ends the proof of
Theorem 5. □
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5. The invariant probability measures: proof of Proposition 8

We now study the invariant probability measures of the non-linear process (2). We follow
the strategy of [18]: we first study the linear process driven by a constant current a and show
that it has a unique invariant probability measure. We then use this result to study the invariant
probability measures of the non-linear equation (2). Let a ≥ 0 and (Y ν,a

t )t the solution of the
following SDE:

Y ν,a
t = Y ν,a

0 +

∫ t

0
b(Y ν,a

u )du + at −

∫ t

0

∫
R+

Y ν,a
u− 1{z≤ f (Y ν,au−

)}N(du, dz) (29)

Eq. (29) is Eq. (5) with ∀t ≥ 0, at = a and s = 0.

Proposition 26. Grant Assumptions 2 and 3. Then the SDE (29) has a unique invariant
probability measure ν∞

a given by Eq. (14):

ν∞

a (dx) :=
γ (a)

b(x) + a
exp

(
−

∫ x

0

f (y)
b(y) + a

dy
)
1{x∈[0,σa ]}dx,

where γ (a) is the normalizing factor given by (15). Moreover we have ν∞
a ( f ) = γ (a).

A proof of this result can be found in [18, Prop. 21] with b(x) := −κx and with slightly
different assumptions on f . We give here a proof based on different arguments. Note that the
general method introduced by [9] to find the stationary measures of a PDMP can be applied
here; we use a method introduced in this paper to prove the uniqueness part.

Proof. Let us first check that the probability measure ν∞
a is indeed an invariant measure of

(29).

Claim 1 The probability measure ν∞
a satisfies Assumption 4.

First b(0) > 0 yields to ∀a ≥ 0, σa ≥ σ0 > 0. The function t ↦→ ϕa
t (0) is a bijection from

R+ to [0, σa). Consequently, the changes of variable x = ϕa
t (0) and y = ϕa

u (0) give∫ σa

0

f 2(x)
b(x) + a

exp
(

−

∫ x

0

f (y)
b(y) + a

dy
)

dx =

∫
∞

0
f 2(ϕa

t (0)) exp
(

−

∫ t

0
f (ϕa

u (0))du
)

dt .

This last integral is finite by Remark 12.

Claim 2 We have: K ν∞a
a (t) = γ (a)Ha(t).

We recall that Ha(t) = H δ0
a (t, 0). We have, for all t ≥ 0:

K ν∞a
a (t) =

∫ σa

0
f (ϕa

t (x)) exp
(

−

∫ t

0
f (ϕa

u (x))du
)

γ (a)
b(x) + a

exp
(

−

∫ x

0

f (y)
b(y) + a

dy
)

dx .

(30)

The change of variable y = ϕa
u (0) yields:

K ν∞
a

a (t) =

∫ σa

0
f (ϕa

t (x)) exp
(

−

∫ t

0
f (ϕa

u (x))du
)

γ (a)
b(x) + a

exp
(

−

∫ t(x)

0
f (ϕa

u (0))du
)

dx,
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where t(x) is the unique t ≥ 0 such that ϕa
t (0) = x . We now make the change of variable

x = ϕa
s (0) we obtain (using the semi-group property satisfied by ϕa

t (0)):

K ν∞
a

a (t) = γ (a)
∫

∞

0
f (ϕa

t (ϕa
s (0))) exp

(
−

∫ t

0
f (ϕa

u (ϕa
s (0)))du

)
exp

(
−

∫ s

0
f (ϕa

u (0))du
)

ds

= γ (a)
∫

∞

t
f (ϕa

θ (0)) exp
(

−

∫ θ

0
f (ϕa

u (0))du
)

dθ

= γ (a)
[

Ha(t) − lim
θ→∞

exp
(

−

∫ θ

0
f (ϕa

u (0))du
)]
.

Using Remark 2, we have: limθ→∞ exp
(
−

∫ θ
0 f (ϕa

u (0))du
)

= 0 and the claim is proved.

We now consider (Y ν∞a ,a
t )t≥0 the solution of Eq. (29) starting from L(Y ν∞a ,a

0 ) = ν∞
a .

Proposition 19 applies, so r ν
∞
a

a (t) = E f (Y ν∞a ,a
t ) is the unique solution of the Volterra equation

r ν
∞
a

a = K ν∞a
a + Ka ∗ r ν

∞
a

a .

Using Claim 2 and the relation (23), we verify that the constant function γ (a) is a solution of

K ν∞a
a + Ka ∗ γ (a) = γ (a)Ha + γ (a)(1 − Ha) = γ (a).

By uniqueness (Lemma 20), we deduce that ∀t ≥ 0, r ν
∞
a

a (t) = γ (a).
Finally, let φ : R+ → R+ be a measurable function. Using Proposition 19, we have:

Eφ(Y ν
∞
a ,a

t ) = γ (a)
∫ t

0
φ(ϕa

t−u(0))Ha(t − u)du +

∫
∞

0
φ(ϕa

t (x))H x
a (t)ν∞

a (dx)

= γ (a)
∫ t

0
φ(ϕa

u (0))Ha(u)du

+

∫ σa

0
φ(ϕa

t (x)) exp
(

−

∫ t

0
f (ϕa

u (x))du
)

γ (a)
b(x) + a

exp
(

−

∫ x

0

f (y)
b(y) + a

dy
)

dx .

The change of variables y = ϕa
u (0) and x = ϕa

θ (0) yields

Eφ(Y ν∞a ,a
t )

= γ (a)
∫ t

0
φ(ϕa

u (0))Ha(u)du

+ γ (a)
∫

∞

0
φ(ϕa

t (ϕa
θ (0))) exp

(
−

∫ t

0
f (ϕa

u (ϕa
θ (0)))du

)
exp

(
−

∫ θ

0
f (ϕa

u (0))du
)

dθ

= γ (a)
∫ t

0
φ(ϕa

u (0))Ha(u)du + γ (a)
∫

∞

t
φ(ϕa

u (0)) exp
(

−

∫ u

0
f (ϕa

θ (0))dθ
)

du

= γ (a)
∫

∞

0
φ(ϕa

u (0))Ha(u)du

= ν∞

a (φ).

This proves that ∀t ≥ 0, L(Y ν∞a ,a
t ) = ν∞

a and consequently ν∞
a is an invariant probability

measure of (29). Moreover, we have

ν∞

a ( f ) = γ (a)
∫ σa

0

f (x)
b(x) + a

exp
(

−

∫ x

0

f (y)
b(y) + a

dy
)

dx = γ (a).

It remains to prove that the invariant probability measure is unique. Following [10] and [9],
we define Bac(R+) the set of bounded function h : R+ → R such that for all x ∈ R+,
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the function t ↦→ h(ϕa
t (x)) is absolutely continuous on R+. For h ∈ Bac(R+), we define

Hh(x) :=
d
dt h(ϕa

t (x))
⏐⏐
t=0.

Claim 3 Let h ∈ Bac(R+), then for all x ≥ 0 we have

d
dt Eh(Y δx ,a

t )
⏐⏐⏐
t=0

= Lh(x) with Lh(x) := Hh(x) + (h(0) − h(x)) f (x).

Let τ x
1 = inf{t ≥ 0 : Y δx ,a

t ̸= Y δx ,a
t− } and τ x

2 = inf{t ≥ τ x
1 : Y δx ,a

t ̸= Y δx ,a
t− } be the times of the

first and second jumps of (Y δx ,a
t ). We have

Eh(Y δx ,a
t ) = Eh(Y δx ,a

t )1{t<τ x
1 } + Eh(Y δx ,a

t )1{τ x
1 ≤t<τ x

2 } + Eh(Y δx ,a
t )1{t≥τ x

2 } =: αt + βt + θt .

By Lemma 16, we have αt = h(ϕa
t (x))P(t < τ x

1 ) = h(ϕa
t (x))H x

a (t). It follows that d
dt αt

⏐⏐
t=0 =

Hh(x) − h(x) f (x). Moreover using that the density of τ x
1 is s ↦→ K x

a (s) it holds that
βt =

∫ t
0 h(ϕa

t−s(0))K x
a (s)H 0

a (t − s)ds. We deduce that d
dt βt

⏐⏐
t=0 = h(0) f (x). Then, using that

h is bounded, we have θt ≤ ∥h∥∞

∫ t
0

∫ t
0 K x

a (u)K 0
a (s − u)duds ∈ O(t2). This proves Claim 3.

Let g be a bounded measurable function. We follow the method of [9] (proof of Theo-
rem 3(a)) and define

∀x ≥ 0, λg(x) :=

∫
∞

0
g(ϕa

t (x)) exp
(

−

∫ t

0
f (ϕa

r (x))dr
)

dt .

Claim 4 The function λg belongs to Bac(R+) and satisfies Hλg(x) = f (x)λg(x) − g(x).
Using the semi-group property of ϕa

t (x) we have

λg(ϕa
t (x)) = exp

(∫ t

0
f (ϕa

u (x))du
) [
λg(x) −

∫ t

0
g(ϕa

u (x)) exp
(

−

∫ u

0
f (ϕa

θ (x))dθ
)

du
]
.

This proves that λg is in Bac(R+) with d
dt λg(ϕa

t (x)) = f (ϕa
t (x))λg(ϕa

t (x)) − g(ϕa
t (x)) and gives

the stated formula.
Consider now ν an invariant probability measure with ν( f ) < ∞. The Markov property at

time t = 0 together with Claim 3 shows that d
dt Eλg(Y ν,a

t )
⏐⏐
t=0 =

d
dt

∫
∞

0 Eλg(Y δx ,a
t )ν(dx)

⏐⏐⏐
t=0

=

ν(Lλg). The exchange of the derivative at time t = 0 and the integral on R+ is legitimate
thanks to the Dominated Convergence Theorem. Claim 4 and the fact that ν is an invariant
measure then show that

0 =
d
dt

Eλg(Y ν,a
t )

⏐⏐⏐⏐
t=0

= λg(0)ν( f ) − ν(g).

The same computations can be done with g ≡ 1, giving λ1(0)ν( f ) = 1. It follows that

ν(g) =
λg(0)
λ1(0)

=

∫
∞

0
g(x)ν∞

a (dx).

We deduce that necessarily ν = ν∞
a . □

The next lemma characterizes the invariant probability measures of (2).

Lemma 27. The invariant probability measures of the non-linear equation (2) are {ν∞
a | a =

Jγ (a), a ∈ R+}.

Proof. Let ν be an invariant probability measure of (2) and L(X0) = ν. We have

∀t ≥ 0, E f (X t ) = ν( f ) =: p.
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Let a := J p. The process (X t )t≥0 solves (29) and ν is an invariant probability measure
of Eq. (29). It implies that ν = ν∞

a . Moreover p = γ (a) and so necessarily a
γ (a) = J .

Conversely, let a ≥ 0 such that a
γ (a) = J . Let (Y ν∞a ,a

t ) be the solution of (29) with

L(Y ν∞a ,a
0 ) = ν∞

a . We have seen that E f (Y ν∞a ,a
t ) = γ (a), it follows that a = JE f (Y ν∞a ,a

t ).
Consequently (Y ν∞a ,a

t )t≥0 solves (2) and ν∞
a is one of its invariant probability measures. □

The problem of finding the invariant probability measures of the mean-field equation (2)
has been reduced to finding the solutions of the scalar equation (16). When J is small enough,
we can prove that it has a unique solution, which concludes the proof of Proposition 8.

Lemma 28. Eq. (16) has at least one solution a∗ > 0. Moreover, there is a constant J0 > 0
such that for all J ∈ [0, J0] (16) has a unique solution.

Proof. Recall (15). By the changes of variable y = ϕa
u (0) and x = ϕa

t (0), it holds that

γ (a)−1
=

∫
∞

0
exp

(
−

∫ t

0
f (ϕa

u (0))du
)

dt . (31)

In particular, the function a ↦→ γ (a) is non-decreasing. Furthermore, using that b(x) ≤ Cb, we
have

a
γ (a)

≥ a
∫

∞

0
exp

(
−

∫ t

0
f ((a + Cb)u)du

)
dt

≥
a

a + Cb

∫
∞

0
exp

(
−

1
a + Cb

∫ θ

0
f (z)dz

)
dθ.

We deduce that lima→+∞ aγ (a)−1
= +∞. Let U (a) := aγ (a)−1. One has U (0) = 0,

lima→+∞ U (a) = +∞ and U is continuous on R+. It follows that the equation U (a) = J
has at least one solution a∗. Moreover, one can show that the function U has a derivative at
a = 0 and U ′(0) = 1/γ (0) > 0. Consequently, there is a0 > 0 such that U is strictly increasing
on [0, a0]. Using lima→+∞ U (a) = +∞, we can find a1 such that: ∀a ≥ a1,U (a) ≥ 1. Finally
let J0 := mina∈[a0,a1] U (a) > 0. Let J < J0, it is clear that the equation U (a) = J has exactly
one solution a∗

∈ [0, a0]. □

6. The convergence of the jump rate implies the convergence in law of the time
marginals

The goal of this section is to prove that controlling the behavior of the jump rate t ↦→ E f (X t )
can be sufficient to deduce the asymptotic law of (X t ), solution of (2).

Proposition 29. Grant Assumptions 2, 3, 4. Let (X t )t≥0 be the solution of the non-linear
equation (2). Assume that there exist constants λ,C > 0 and a∗

≥ 0 (that may depend on b,
f , ν, and J ) such that:

∀t ≥ 0, |E f (X t ) − γ (a∗)| ≤ Ce−λt ,

and that a∗ satisfies Eq. (16): a∗

γ (a∗) = J . Then

X t
L

−→
t→∞

ν∞

a∗ .
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Moreover, if φ : R+ → R is any bounded Lipschitz-continuous function, it holds that

∀0 < λ′ < min(λ, f (σ0)), ∃D > 0 s.t. ∀t ≥ 0, |Eφ(X t ) − ν∞

a∗ (φ)| ≤ De−λ′t ,

where the constant D only depends on b, f, J,C, ν, λ′ and φ through its infinite norm and its
Lipschitz constant.

Proof. Let (X t )t≥0 be the solution of (2) and φ : R+ → R a bounded Lipschitz-continuous
function, with Lipschitz constant lφ . Consider λ′

∈ (0,min(λ, f (σ0))). We denote by D any
constant only depending on b, f, J,C, ν, λ′, ∥φ∥∞ and lφ which shall change from line to line.
Define for all t ≥ 0, at := JE f (X t ). It holds that (X t )t≥0 is a solution of (5) with driving
current (at ). Denote r ν(a.)(t, 0) = E f (X t ). By Proposition 19, we have

Eφ(X t ) =

∫ t

0
φ(ϕ(a.)

t,u (0))H(a.)(t, u)r ν(a.)(u, 0)du +

∫
∞

0
φ(ϕ(a.)

t,0 (x))H x
(a.)(t, 0)ν(dx)

Using Remarks 13 and 12(2), together with the fact that λ′ < f (σ0), we deduce that

∀t ≥ 0,
∫

∞

0
φ(ϕ(a.)

t,0 (x))H x
(a.)(t, 0)ν(dx) ≤ De−λ′t

for some constant D. Moreover, one has, using the change of variable x = ϕa∗

v (0)

ν∞

a∗ (φ) =

∫ σa∗

0
φ(x)ν∞

a∗ (dx) =

∫
∞

0
φ(ϕa∗

v (0))γ (a∗)Ha∗ (v)dv

=

∫ t

0
φ(ϕa∗

t,u(0))Ha∗ (t, u)γ (a∗)du +

∫
∞

t
φ(ϕa∗

v (0))γ (a∗)Ha∗ (v)dv.

The last equality is obtained with the change of variable v = t−u. The second term is controlled
by ∫

∞

t
φ(ϕa∗

u (0))γ (a∗)Ha∗ (u)du

≤ ∥φ∥∞γ (a∗)
∫

∞

t

f (ϕa∗

u (0))
infv≥t f (ϕa∗

v (0))
exp

(
−

∫ u

0
f (ϕa∗

θ (0))dθ
)

du

=
∥φ∥∞γ (a∗)

infv≥t f (ϕa∗

v (0))
exp

(
−

∫ t

0
f (ϕa∗

θ (0))dθ
)

≤ De−λ′t ,

for some constant D. We used again Remark 12. It remains to show that

∆ :=

⏐⏐⏐⏐∫ t

0
φ(ϕ(a.)

t,u (0))H(a.)(t, u)r ν(a.)(u, 0)du −

∫ t

0
φ(ϕa∗

t,u(0))Ha∗ (t, u)γ (a∗)du
⏐⏐⏐⏐

goes to zero exponentially fast. One has

∆ ≤

∫ t

0

⏐⏐⏐φ(ϕ(a.)
t,u (0)) − φ(ϕa∗

t,u(0))
⏐⏐⏐ H(a.)(t, u)r ν(a.)(u, 0)du

+

∫ t

0

⏐⏐H(a.)(t, u) − Ha∗ (t, u)
⏐⏐φ(ϕa∗

t,u(0))r ν(a.)(u, 0)du

+

∫ t

0
Ha∗ (t, u)φ(ϕa∗

t,u(0))
⏐⏐r ν(a.)(u, 0) − γ (a∗)

⏐⏐ du

=: αt + βt + θt .
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Using that for all t ≥ 0, |r ν(a.)(t, 0) − γ (a∗)| ≤ Ce−λ′t (λ′ < λ) and Remark 13, we obtain:

θt ≤ C∥φ∥∞

∫ t

0
H0(t, u)e−λ′udu

= C∥φ∥∞e−λ′t
∫ t

0
H0(t − u)eλ

′(t−u)du

≤

[
C∥φ∥∞

∫
∞

0
H0(u)eλ

′udu
]

e−λ′t
=: De−λ′t .

The fact that u ↦→ H0(u)eλ
′u belongs to L1(R+) follows from λ′ < f (σ0). By Theorem 5, one

can find a constant p̄ (with γ (a∗) ≤ p̄) such that:

∀t ≥ 0, E f (X t ) = r ν(a.)(t, 0) ≤ p̄.

Moreover, Assumption 2 and Remark 13 give

αt ≤ p̄lφ

∫ t

0
|ϕ

(a.)
t,u (0) − ϕa∗

t,u(0)|H0(t, u)du

≤ p̄lφCϕ

∫ t

0

∫ t

u
|aθ − a∗

|dθH0(t, u)du.

Using that
∫ t

u |aθ − a∗
|dθ ≤ JC

∫ t
u e−λ′θdθ ≤

JCe−λ′u

λ′ , one has

αt ≤
p̄lφCϕ JC

λ′
e−λ′t

∫ t

0
eλ

′(t−u) H0(t − u)du

≤

[
p̄lφCϕ JC

λ′

∫
∞

0
H0(u)eλ

′udu
]

e−λ′t
=: De−λ′t .

Finally, using the inequality |e−A
− e−B

| ≤ e− min(A,B)
|A − B| together with Remark 13, we

obtain

βt ≤ ∥φ∥∞ p̄
∫ t

0
H0(t − u)

∫ t

u

⏐⏐⏐ f (ϕ(a.)
θ,u (0)) − f (ϕa∗

θ,u(0))
⏐⏐⏐ dθdu.

Setting ā := J p̄, we have moreover, using that f ′ is non-decreasing and Lemma 2∫ t

u

⏐⏐⏐ f (ϕ(a.)
θ,u (0)) − f (ϕa∗

θ,u(0))
⏐⏐⏐ dθ ≤ f ′(ϕā

t,u)
∫ t

u

⏐⏐⏐ϕ(a.)
θ,u (0) − ϕa∗

θ,u(0)
⏐⏐⏐ dθ.

Assumption 2 yields∫ t

u

⏐⏐⏐ f (ϕ(a.)
θ,u (0)) − f (ϕa∗

θ,u(0))
⏐⏐⏐ dθ ≤ Cϕ f ′(ϕā

t,u(0))
∫ t

u

∫ θ

u
|as − a∗

|dsdθ

≤ Cϕ JC f ′(ϕā
t,u(0))

∫ t

u

∫ θ

u
e−λ′sdsdθ

≤ Cϕ

JC
λ′

f ′(ϕā
t,u(0))(t − u)eλ

′(t−u)e−λ′t .

We used the fact that∫ t

u

∫ θ

u
e−λ′sdsdθ =

∫ t

u

e−λ′u
− e−λ′θ

λ′
dθ ≤

(t − u)e−λ′u

λ′
.

Note that Lemma 3 implies that f ′(ϕā
t,u(0)) ≤ f ′(C ā

b (t − u)) and using Remark 12(1) we have

∀ϵ > 0, ∃Aϵ : ∀x ≥ 0, f ′(x) ≤ Aϵeϵx .
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Choosing ϵ := ( f (σ0) − λ′)/2, we obtain∫ t

u

⏐⏐⏐ f (ϕ(a.)
θ,u (0)) − f (ϕa∗

θ,u(0))
⏐⏐⏐ dθ ≤ AϵCϕ

JC
λ′

(t − u)e(λ′
+ϵ)(t−u)e−λ′t ,

and we deduce that

βt ≤

[
Aϵ JCϕC∥φ∥∞ā

λ′

∫
+∞

0
H0(u)ue(λ′

+ϵ)udu
]

e−λ′t
=: De−λ′t .

Combining the three estimates, we have proved the result. □

7. Long time behavior with constant drift

The goal of this section is to study the rate of convergence to the invariant probability
measure when J = 0 (no interaction). We use Laplace transform techniques to characterize
the convergence. We state here the main result of the section.

Proposition 30. Grant Assumptions 2, 3, 4. Let (Y ν,a
t )t≥0 be the solution of (5), driven by a

constant current (at ) ≡ a, a ≥ 0; starting at time s = 0 with law ν. One can find a constant
λ∗

a ∈ (0, f (σa)] (only depending on b, f and a) such that for any 0 < λ < λ∗
a it holds

∀t ≥ 0, |E f (Y ν,a
t ) − γ (a)| ≤ De−λt

∫
∞

0
[1 + f (x)]|ν − ν∞

a |(dx), (32)

where D is a constant only depending on f, b, a and λ. Moreover, one has

Y ν,a
t

L
−→
t→∞

ν∞

a .

Remark 31. In the above result, λ∗
a is explicitly known in terms of f, b and a (see its

expression (35)) and is optimal (see Remark 40). Note also that (32) states explicitly the
dependence on the initial distribution ν through its distance to the invariant measure ν∞

a .

7.1. Study of the Volterra equation

In the case where (at ) is constant and equal to a, the Volterra equation (21) is a linear
homogeneous convolution Volterra equation. If moreover the initial condition ν is δ0, the kernel
ra(t) := E f (Y δ0,a

t ) satisfies

ra = Ka + Ka ∗ ra, (33)

For such equations, it is very natural to use Laplace transform techniques as convolutions
become scalar products with this transformation. Furthermore, the “kernel” Ka and the “forcing
term” K ν

a are non-negative. Volterra equation with positive kernels have been studied in the
context of Renewal theory. The main reference on this question is a paper of Feller [17]. The
author use Tauberian theorems to obtain a polynomial rate of convergence of the solution.
We refer to [17, Th. 4] for this method. However, in our case the rate of convergence is
exponential. In order to achieve the optimal rate of convergence, we use general methods from
the Volterra integral equation theory, and especially the so called “Whole-line Palay–Wiener”
Theorem.

Along this section, we grant Assumptions 2, 3, 4.



Q. Cormier, E. Tanré and R. Veltz / Stochastic Processes and their Applications 130 (2020) 2553–2595 2579

Definition 32 (Laplace Transform). Let g : R+ ↦→ R be a measurable function. The Laplace
transform of g is the following function

ĝ(z) :=

∫
∞

0
e−zt g(t)dt,

defined for all z ∈ C for which the integral exists.

Note that the Laplace transforms of Ha and Ka are well defined for all z ∈ C with
R(z) > − f (σa). This follows from the fact that ∀λ < f (σa), supt≥0 Ha(t)eλt < ∞. The
same holds for Ka . Integrating by parts the Laplace transform of Ka shows that

∀z ∈ C, R(z) > − f (σa) H⇒ K̂a(z) = 1 − z Ĥa(z). (34)

It is also useful to introduce the following Banach space

Definition 33. For any λ ∈ R, let Lλ = { f ∈ B(R+,R) : ∥ f ∥λ,1 < ∞} the space of
Borel-measurable functions from R+ to R, equipped with the norm

∥ f ∥λ,1 =

∫
R+

| f (s)|eλsds.

The long time behavior of ra is related to the location of the poles of r̂a . Eq. (33) gives

∀R(z) > 0 r̂a(z) =
K̂a(z)

1 − K̂a(z)
.

This suggests to study the location of the zeros of 1 − K̂a(z) = z Ĥa(z).

7.2. On the zeros of Ĥa

Lemma 34. ∀z ∈ C, R(z) ≥ 0 H⇒ Ĥa(z) ̸= 0.

Proof. Remark first that Ha being a real-valued function, Ĥa(z) = 0 iff Ĥa(z̄) = 0, so it
is sufficient to locate the zeros of Ĥa in the region I(z) ≥ 0. Next, it follows from for the
non-negativity of Ka that

|K̂a(z)| ≤

∫
∞

0
|e−t z

|Ka(t)dt <
∫

∞

0
Ka(t)dt = 1 if R(z) > 0.

It yields R(z) > 0 H⇒ Ĥa(z) ̸= 0. Moreover, following [17] proof of Theorem 4, (b), if
z = iy, y > 0 then

iy Ĥa(iy) = 1 − K̂a(iy) =

∫
∞

0
(1 − cos(yt))Ka(t)dt + i

∫
∞

0
sin(yt)Ka(t)dt.

Consequently, K̂a(iy) = 1 for some y > 0 would imply that for Lebesgue almost every
t ≥ 0, (1 − cos(yt))Ka(t) = 0, that is, a.e. Ka(t) = 0. It obviously contradicts the assumption
f (x) > 0 for x > 0. It follows that ∀y > 0, Ĥa(iy) ̸= 0. Finally for z = 0, we have
Ĥa(0) =

∫
∞

0 Ha(t)dt ̸= 0. □

Lemma 35. The zeros of Ĥa are isolated.

Proof. This directly follows from the fact that Ĥa is an holomorphic function on R(z) >
− f (σa) and thus its zeros are isolated. □
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Lemma 36. For all z ∈ C, it holds that

|K̂a(z)| ≤
φa(R(z))

|I(z)|
,

where for all x ∈ R, φa(x) := ∥K ′
a,x∥1 and Ka,x (t) := e−xt Ka(t), K ′

a,x (t) :=
d
dt Ka,x (t).

Consequently, the zeros of Ĥa are within a “cone”:

∀z ∈ C, R(z) > − f (σa), z = x + iy, Ĥa(z) = 0 H⇒ |y| ≤ φa(x).

Proof. Let z = x + iy, y > 0, x > − f (σa). We have

K̂a(z) =

∫
∞

0
e−zt Ka(t)dt =

∫
∞

0
e−iyt Ka,x (t)dt =

∫
∞

0

e−iyt

iy
K ′

a,x (t)dt.

The last equality follows by an integration by part. It yields

|K̂a(z)| ≤
∥K ′

a,x∥1

|y|
.

We deduce that for |y| > ∥K ′
a,x∥1, we have K̂a(z) ̸= 1 and also Ĥa(z) ̸= 0. □

Consequently, from Lemmas 34–36, we can define the abscissa of the “first” zero of Ĥa :

λ∗

a := − sup{R(z)| R(z) > − f (σa), Ĥa(z) = 0}, (35)

with the convention that λ∗
a = f (σa) if the set of zeros is empty. We have proved that

0 < λ∗

a ≤ f (σa) ≤ ∞.

The parameter λ∗
a is key here as it gives the speed of convergence to the invariant probability

measure. It only depends on a, b and f .

7.3. Convergence with optimal rate

Our goal in this section is to prove the following proposition

Proposition 37. Eq. (33) has a unique solution ra of the form:

ra = γ (a) + ξa with ∀λ ∈ [0, λ∗

a), ξa ∈ Lλ.

The constant λ∗
a > 0 is defined by (35).

This result can be deduced from general theorems of the Volterra equations theory. For
instance, one can apply [20, Th. 2.4, Chap. 7]. However, this last result is written for general
measure kernels in weighted spaces and its proof is somehow difficult to follow. In our setting,
the proof given by [20] simplifies a lot and we give it here for completeness. We use the
following so-called “Whole Line Palay–Wiener” Theorem which is one of the most important
ingredients of the convolution Volterra integral equations theory.

Theorem 38 (Whole-line Palay–Wiener). Let k ∈ L1(R,R). There exists a function x ∈

L1(R,R) satisfying the equation

∀t ≥ 0, x(t) = k(t) +

∫
R

k(t − u)x(u)du
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if and only if

∀y ∈ R, k̂(iy) :=

∫
R

e−iyt k(t)dt ̸= 1.

Note that here k̂(iy) is actually the Fourier transform of k evaluated at y ∈ R.

Proof. See [20, Th. 4.3, Chap. 2]. We prove later, in details, an extension of this theorem (see
Proposition 51). □

Proof of Proposition 37. Let σ− and σ+ be any real numbers such that:

−λ∗

a < σ− < 0 < σ+ < ∞.

We first extend ra , Ka and Ha to the whole line by defining: ∀t ∈ R, ra(t) := ra(t)1{t≥0},

Ka(t) := Ka(t)1{t≥0} and Ha(t) := Ha(t)1{t≥0}. We have from (33)

∀t ∈ R, ra(t) = Ka(t) +

∫
R

Ka(t − u)ra(u)du. (36)

For any △ ∈ R, we also define ra,△(t) := e−△tra(t), Ka,△(t) := e−△t Ka(t). Note that
Ka,σ−

∈ L1(R) and that ∀y ∈ R, K̂a,σ−
(iy) = K̂a(σ− + iy) ̸= 1 (by definition of λ∗

a). We
can apply Theorem 38: there exists ξa,σ−

∈ L1(R) such that

∀t ∈ R, ξa,σ−
(t) = Ka,σ−

(t) +

∫
R

Ka,σ−
(t − u)ξa,σ−

(u)du. (37)

We define ξa(t) := eσ−tξa,σ−
(t). We have

∫
R |ξa(u)|e−σ−udu < ∞ and (37) reads

∀t ∈ R, ξa(t) = Ka(t) +

∫
R

Ka(t − u)ξa(u)du.

Remark 39. The function ξa is not null on R− (see formula (39) just below).

We have, using equalities (36) and (37)

ξa,σ−
∈ L1(R), ξ̂a,σ−

(iy) =

[
K̂a

1 − K̂a

]
(iy + σ−),

ra,σ+
∈ L1(R), r̂a,σ+

(iy) =

[
K̂a

1 − K̂a

]
(iy + σ+).

We can now use the Fourier inverse formula for L1(R) functions to get

ξa,σ−
(t) =

1
2π

∫
R

eiyt
[

K̂a

1 − K̂a

]
(iy + σ−)dy and

ra,σ+
(t) =

1
2π

∫
R

eiyt
[

K̂a

1 − K̂a

]
(iy + σ+)dy,

or after the changes of variable z = iy + σ− and z = iy + σ+:

ξa(t) = lim
T →∞

1
2π i

∫ σ−+iT

σ−−iT
ezt K̂a(z)

1 − K̂a(z)
dz and

ra(t) = lim
T →∞

1
2π i

∫ σ++iT

σ+−iT
ezt K̂a(z)

1 − K̂a(z)
dz.
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Let ΓT be the closed curve in the complex plane composed of four straight lines that join the
points σ− − iT , σ− + iT , σ+ + iT , and σ+ − iT in the anti-clockwise direction. It follows from
the residue theorem that∫

ΓT

ezt K̂a(z)
1 − K̂a(z)

dz =

∫
ΓT

ezt K̂a(z)
z Ĥa(z)

dz = 2π i
K̂a(0)
Ĥa(0)

= 2π iγ (a). (38)

The last equality follows from

Ĥa(0) =

∫
∞

0
Ha(t)dt =

∫
∞

0
exp

(
−

∫ t

0
f (ϕa

u )du
)

dt
(31)
=

1
γ (a)

.

By Lemma 36, for all z in the strip R(z) ∈ [σ−, σ+], z ̸= 0, we have

|K̂a(z)| ≤
φa(σ−)
|I(z)|

.

We deduce that

lim
T →±∞

∫ σ++iT

σ−+iT
ezt K̂a(z)

1 − K̂a(z)
dz = 0.

Therefore we can take the limit T → ∞ in (38) and obtain

∀t ∈ R, ra(t) = γ (a) + ξa(t). (39)

The proposition is proven by choosing σ− = −λ. □

Remark 40. The speed of convergence obtained in this result is optimal if λ∗
a < f (σa) (i.e. Ĥa

has at least one complex zero with R(z) > − f (σa)) in the sense that

∀λ > λ∗

a, ra − γ (a) /∈ Lλ.

To see this, assume that λ∗
a < f (σa) and choose σ− such that − f (σa) < σ− < −λ∗

a . The
previous proof can be mimicked except that the residues of Eq. (38) now involves terms of the
order e−λ∗

a t - corresponding to the roots of Ĥa with real part equal to −λ∗
a .

7.4. Long time behavior starting from initial condition ν: proof of Proposition 30

We now come back to the general case where the initial condition can be any probability
measure satisfying Assumption 4, and we give the proof of Proposition 30.

Proof of Proposition 30. Note that we only consider here the convolutions on [0, t] denoted
by ∗ (and no more the convolution on R). Let r νa (t) = E f (Y ν,a

t ) with L(Y0) = ν. The function
r νa is the unique solution of the Volterra equation

r νa = K ν
a + Ka ∗ r νa .

If we choose ν to be the invariant probability measure ν∞
a , we get γ (a) = K ν∞a

a + Ka ∗ γ (a)
and

r νa − γ (a) = K ν
a − K ν∞a

a + Ka ∗ (r νa − γ (a)).
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We can solve this equation in terms of ra , the “resolvent” of Ka (using Lemma 21) and obtain

r νa − γ (a) = K ν
a − K ν∞a

a + ra ∗ (K ν
a − K ν∞a

a )

= K ν
a − K ν∞a

a + ξa ∗ (K ν
a − K ν∞a

a ) + γ (a) ∗ (K ν
a − K ν∞a

a ),

where ra = ξa + γ (a), see (39), is the solution of the Volterra equation ra = Ka + Ka ∗ ra .
Using (23), we have γ (a) ∗ K ν

a = γ (a)(1 − H ν
a ) and thus

r νa − γ (a) = K ν
a − K ν∞a

a + γ (a)(H ν∞a
a − H ν

a ) + ξa ∗ (K ν
a − K ν∞a

a ).

We now write Θ any constant only depending on λ, f, b and a and which may change from
line to line. It is clear that for any 0 < λ < f (σa)

|H ν∞a
a − H ν

a |(t) ≤

∫
∞

0
H x

a (t)|ν − ν∞

a |(dx) ≤

∫
∞

0
Ha(t)|ν − ν∞

a |(dx)

≤ Θe−λt
∫

∞

0
|ν − ν∞

a |(dx).

Similarly, for any 0 < λ < f (σa),

|K ν
a − K ν∞a

a |(t) ≤

∫
∞

0
f (ϕa

t (x))H x
a (t)|ν − ν∞

a |(dx)

≤

∫
∞

0
f (x + Ca

b t)Ha(t)|ν − ν∞

a |(dx)

≤ C f

∫
∞

0
[1 + f (x) + f (Ca

b t)]Ha(t)|ν − ν∞

a |(dx)

≤ Θe−λt
∫

∞

0
(1 + f (x))|ν − ν∞

a |(dx).

We used here Assumption 3.1. Let now 0 < λ < λ∗
a . Using ξa ∈ Lλ, it holds that

|ξa ∗ (K ν
a − K ν∞a

a )|(t) ≤

∫ t

0
|ξa(t − u)||K ν

a − K ν∞a
a |(u)du

≤ Θe−λt
∫

∞

0
(1 + f (x))|ν − ν∞

a |(dx).

Combining the three estimates, one deduces that

|r νa (t) − γ (a)| ≤ Θe−λt
∫

∞

0
(1 + f (x))|ν − ν∞

a |(dx).

It remains to prove that limt→∞ L(Y ν,a
t ) = ν∞

a . The process (Y ν,a
t )t≥0 is the solution of (2)

with b̃(x) = b(x) + a and J = 0. Obviously, 0 solves (16). Applying Proposition 29 ends the
proof. □

8. Long time behavior with a general drift

In this section, we generalize the results obtained in Section 7 to non constant currents.
We consider the process (5) driven by a current (at ) assuming to converge exponentially fast
to a. We seek to prove that the jump rate of this process is converging to γ (a) and estimate
the speed of convergence. This “perturbation” analysis will be useful to study the long time
behavior of the solution of the non-linear McKean–Vlasov equation (2) with small interactions.
We consider a non-negative continuous function (at )t≥0 such that
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Assumptions 41.

1. supt≥0 at ≤ ā for some constant ā > 0.

2. There exist a ≥ 0, C ≥ 0 and λ ∈ (0,min(λ∗
a, f (σ0))), where σ0 and λ∗

a are defined by
(17) and (35), such that

∀t ≥ 0, |at − a| ≤ Ce−λt . (40)

Note that the values of C and λ are important in this analysis. Any mention of C and λ in
this section refer to these two constants.

Let r ν(a.)(t, s) = E f (Y s,ν,(a.)
t ), where Y s,ν,(a.)

t is the solution of (5) driven by the current (at )
and starting at time s with law ν. The goal of this section is to prove that if C is small enough,
then there exists an explicit constant D such that

∀t ≥ s ≥ 0, |r ν(a.)(t, s) − γ (a)| ≤ De−λ(t−s) ,

where γ (a) is given by (15). Note that the exponential decay rate λ is preserved. We make
efforts to keep track of the constant D and to relate it to C . As in Section 7 it is useful to split
the study in two parts: the case where the initial condition is a Dirac mass at 0 and the general
case. We thus consider the unique solution r(a.) of the following Volterra equation:

r(a.) = K(a.) + K(a.) ∗ r(a.). (41)

It is also useful to introduce a Banach space adapted to this non-homogeneous setting.

8.1. An adapted Banach algebra

Definition 42. A function K : (R+)2
→ R is said to be a Volterra Kernel with weight λ ∈ R

if: K is Borel measurable, ∀s > t : K (t, s) = 0 a.e. and ∥K∥λ,1 < ∞ with

∥K∥λ,1 := ess sup
t≥0

∫
R+

|K (t, s)|eλ(t−s)ds.

We define Vλ the set of Volterra kernels with weight λ. We also define for K ∈ Vλ:

∥K∥λ,∞ = ess sup
t,s≥0

|K (t, s)eλ(t−s)
| ∈ R+ ∪ {+∞}.

Proposition 43. The space (Vλ, ∥ · ∥λ,1) is a Banach algebra. Furthermore, for all a, b ∈ Vλ,
∥a ∗ b∥λ,1 ≤ ∥a∥λ,1∥b∥λ,1.

Proposition 43 is proved in [20], Theorem 2.4 and Proposition 2.7 (i) of Chapter 9.

Lemma 44 (Connection with the time homogeneous setting). Let g ∈ Lλ. We define

∀t, s ∈ R+, g̃(t, s) := g(t − s)1t≥s .

Then g̃ ∈ Vλ and ∥g∥λ,1 = ∥g̃∥λ,1.

This result allows us to consider elements of Lλ as elements of Vλ. Note that the algebra
Lλ is commutative whereas Vλ is not.
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8.2. The perturbation method

Define K̄(a.) := K(a.) − Ka and H̄(a.) := H(a.) − Ha .

Lemma 45. Grant Assumptions 2, 3 and 41. Then, there exists a continuous non-negative and
integrable function η such that for all t ≥ s ≥ 0, one has

|K̄(a.)(t, s)| ≤ Ce−λtη(t − s),

|H̄(a.)(t, s)| ≤ Ce−λtη(t − s).

The function η only depends on b, ā, f and λ (in particular it does not depend on C).
Furthermore, we can choose η such that ∥η∥1 is a non-decreasing function of ā.

Proof. Here, to simplify the notation, we write ϕ(a.)
t,s for ϕ(a.)

t,s (0). We have

K̄(a.)(t, s) = f (ϕ(a.)
t,s ) exp

(
−

∫ t

s
f (ϕ(a.)

u,s )du
)

− f (ϕa
t,s) exp

(
−

∫ t

s
f (ϕa

u,s)du
)

|K̄(a.)(t, s)| ≤ | f (ϕ(a.)
t,s ) − f (ϕa

t,s)| exp
(

−

∫ t

s
f (ϕ(a.)

u,s )du
)

+ f (ϕa
t,s)

⏐⏐⏐⏐exp
(

−

∫ t

s
f (ϕ(a.)

u,s )du
)

− exp
(

−

∫ t

s
f (ϕa

u,s)du
)⏐⏐⏐⏐

=: M1 + M2.

Assumptions 2, 3.1. and (40) give

| f (ϕ(a.)
t,s ) − f (ϕa

t,s)| ≤ f ′(ϕā
t,s)|ϕ(a.)

t,s − ϕa
t,s | ≤ f ′(C ā

b (t − s))Cϕ

∫ t

s
|au − a|du

≤ f ′(C ā
b (t − s))CϕC

∫ t

s
e−λudu ≤ Ce−λt f ′(C ā

b (t − s))Cϕ

eλ(t−s)

λ
.

Moreover choosing λ′
∈ (λ, f (σ0)) and using the fact that f (ϕ0

u ) → f (σ0) as u → ∞, one
obtains

exp
(

−

∫ t

s
f (ϕ(a.)

u,s )du
)

≤ exp
(

−

∫ t

s
f (ϕ0

u,s)du
)

= exp
(

−

∫ t−s

0
f (ϕ0

u )du
)

≤ D(b, f, λ′)e−λ′(t−s),

for some finite constant D(b, f, λ′). Let α(u) :=
D(b, f,λ′)

λ
e−(λ′

−λ)u f ′(C ā
b u)Cϕ , we have

M1 ≤ Ce−λtα(t − s),

and α ∈ L1(R+). Moreover, for A, B ≥ 0, we have |e−A
− e−B

| ≤ e− min(A,B)
|A − B|. So,

M2 ≤ f (ϕā
t,s) exp

(
−

∫ t−s

0
f (ϕ0

u )du
) ⏐⏐⏐⏐∫ t

s
f (ϕ(a.)

u,s ) − f (ϕa
u,s)du

⏐⏐⏐⏐
≤ f (C ā

b (t − s))D(b, f, λ′)e−λ′(t−s) f ′(C ā
b (t − s))

∫ t

s
|ϕ(a.)

u,s − ϕa
u,s |du.
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One has∫ t

s
|ϕ(a.)

u,s − ϕa
u,s |du ≤ Cϕ

∫ t

s

∫ u

s
|aθ − a|dθdu

≤ CCϕ

∫ t

s

∫ u

s
e−λθdθdu ≤ Ce−λt

·
Cϕ

λ
(t − s)eλ(t−s).

Consequently M2 ≤ Ce−λtβ(t − s) with

β(u) := D(b, f, λ′)e−(λ′
−λ)u f (C ā

b u) f ′(C ā
b u)

Cϕ

λ
u.

It holds that β ∈ L1(R+) and setting η := α + β completes the proof for K̄(a.). The same
computations give a similar result for H̄(a.). □

These estimates are sharp enough to give the following result:

Lemma 46. Grant Assumptions 2, 3 and 41. Let η be the function given by Lemma 45. Denote
by 1 the kernel 1t≥s . Then

1. K̄(a.) ∈ Vλ and ∥K̄(a.)∥λ,1 ≤ C∥η∥1.

2. K̄(a.) ∗ 1 ∈ Vλ and ∥K̄(a.) ∗ 1∥λ,1 ≤
C
λ
∥η∥1.

The exact same estimates holds for H̄(a.) and H̄(a.) ∗ 1.

Proof. Using Lemma 45, we have

∥K̄(a.)∥λ,1 := sup
t≥0

∫ t

0
|K̄(a.)|(t, s)eλ(t−s)ds ≤ sup

t≥0

∫ t

0
Ce−λsη(t − s)ds ≤ C∥η∥1,

proving point 1. For point 2, we have ∀t ≥ s ≥ 0, (K̄(a.) ∗ 1)(t, s) :=
∫ t

s K̄(a.)(t, u)du. And
Lemma 45 gives

∥K̄(a.)∗1∥λ,1 = sup
t≥0

∫ t

0
|K̄(a.) ∗ 1|(t, s)eλ(t−s)ds ≤ sup

t≥0

∫ t

0
Ce−λt

∥η∥1eλ(t−s)ds =
C
λ

∥η∥1. □

Proposition 47. Grant Assumptions 2, 3. Assume (at )t≥0 satisfies Assumption 41 and that the
constant C is small enough:

α := C∥η∥1(1 + ∥ξa∥λ,1 + γ (a)) < 1. (42)

Define ∆K := K̄(a.) + ξa ∗ K̄(a.) −γ (a)H̄(a.) and let ∆r be the solution of the Volterra equation

∆r = ∆K + ∆K ∗ ∆r . (43)

Then

1. ∆K ∈ Vλ with ∥∆K ∥λ,1 ≤ α and ∆K ∗ 1 ∈ Vλ with ∥∆K ∗ 1∥λ,1 ≤
α
λ

.

2. ∆r ∈ Vλ with ∥∆r∥λ,1 ≤
α

1−α
and ∆r ∗ 1 ∈ Vλ with ∥∆r ∗ 1∥λ,1 ≤

α
λ(1−α) .

3. Consider r(a.)(t, s) the jump rate associated to the current (at )t≥0. Then

r(a.) = ra + ∆r + ∆r ∗ ra . (44)

Consequently, we have r(a.) = γ (a) + ξ(a.) with

ξ(a.) = ξa + ∆r + ∆r ∗ ξa + γ (a)(∆r ∗ 1) ∈ Vλ.
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Furthermore,

∥ξ(a.)∥λ,1 ≤ ∥ξa∥λ,1 +
α

1 − α
[1 + ∥ξa∥λ,1 +

γ (a)
λ

].

Proof. By Lemma 46, we have ∥∆K ∥λ,1 ≤ α < 1. Consequently Eq. (43) admits a unique
solution ∆r ∈ Vλ satisfying ∥∆r∥λ,1 ≤

α
1−α

. The kernel ∆r ∗ 1 satisfies the following Volterra
equation

∆r ∗ 1 = (∆K ∗ 1) + ∆K ∗ (∆r ∗ 1) (45)

with ∆K ∗ 1 = (K̄(a.) ∗ 1) + ξa ∗ (K̄(a.) ∗ 1) + γ (a)(H̄(a.) ∗ 1). It follows from Lemma 46 that
∆K ∗1 ∈ Vλ and ∥∆K ∗1∥λ,1 ≤ α/λ. From ∥∆K ∥λ,1 < 1, one gets that Eq. (45) has its solution
in Vλ and

∆r ∗ 1 ∈ Vλ, ∥∆r ∗ 1∥λ,1 ≤
α

λ(1 − α)
.

It remains to check that r(a.) given by (44) is indeed the solution of (41). Let r := ra + ∆r +

∆r ∗ ra . One has

∆K ∗ r = ∆K ∗ ra + (∆r − ∆K ) + (∆r − ∆K ) ∗ ra

= ∆r ∗ ra + ∆r − ∆K

= r − ra − ∆K ,

i.e. r satisfies

r = ra + ∆K + ∆K ∗ r. (46)

Using Proposition 37 and (23), we have ∆K = K̄(a.) + ra ∗ K̄(a.). Eq. (46) gives

r − (K̄(a.) + ra ∗ K̄(a.)) ∗ r = ra + K̄(a.) + ra ∗ K̄(a.).

We multiply this equation by Ka on the left and obtain, using that Ka ∗ra = ra ∗ Ka = ra − Ka :

Ka ∗ r − ra ∗ K̄(a.) ∗ r = ra − Ka + ra ∗ K̄(a.).

The relation K̄(a.) = K(a.) − Ka yields

Ka ∗ r − ra ∗ K̄(a.) ∗ r = ra ∗ K(a.),

or equivalently

∆K ∗ r = K(a.) ∗ r − ra ∗ K(a.).

We substitute this equality in (46) and finally obtain

r = K(a.) + K(a.) ∗ r.

By uniqueness (Lemma 20 with ν = δ0), it follows that r = r(a.). The end of the proof follows
easily. □

Remark 48. Let us explain how the formula (44) was derived. The algebra Vλ does not have
any neutral element (in fact the neutral element would be a Dirac distribution) but assume for
the sake of this heuristic that I is a neutral element of the algebra (i.e. k∗I = I∗k = k ∀k ∈ Vλ).
Eq. (41) can be rewritten as

(I − K(a.)) ∗ (I + r(a.)) = I. (47)
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In particular (taking (at ) ≡ a), we have (I − Ka) ∗ (I + ra) = (I + ra) ∗ (I − Ka) = I .
Furthermore,

I − K(a.) = (I − Ka) ∗ (I − (I + ra) ∗ K̄(a.)),

with K̄(a.) = K(a.)−Ka ∈ Vλ. Eq. (47) becomes (I −Ka)∗(I −(I +ra)∗ K̄(a.))∗(I +r(a.)) = I . We
multiply by I +ra on the left of each side, and we get (I − (I +ra)∗ K̄(a.))∗ (I +r(a.)) = I +ra .

We now expand this equation — the neutral element I disappears and obtain:

r(a.) − (K̄(a.) + ra ∗ K̄(a.)) ∗ r(a.) = ra + K̄(a.) + ra ∗ K̄(a.).

Using the definition of ∆K we obtain r(a.) = ra + ∆K ∗ r(a.) + ∆K . Solving this equation in
terms of ∆r the resolvent of ∆K we have r(a.) = ra +∆K +∆r ∗ (ra +∆K ). It gives the desired
formula.

We now come back to an arbitrary initial condition ν and prove the main result of this
section.

Proposition 49. Grant Assumptions 2, 3, 4. Let (Y s,ν,(a.)
t )t≥s be the solution to the non-

homogeneous equation (5) driven by current (at )t≥0 and with distribution ν at time s. Let
r ν(a.)(t, s) = E f (Y s,ν,(a.)

t ). Assume (at ) satisfies Assumption 41 and that the constant C satisfies
the inequality (42) for some α ∈ (0, 1). Then it holds that

∀t ≥ s ≥ 0, |r ν(a.)(t, s) − γ (a)| ≤ De−λ(t−s),

with

D :=
1 + αγ (a)/λ+ ∥ξa∥λ,1

1 − α
∥K ν

(a.)∥λ,∞ + γ (a)∥H ν
(a.)∥λ,∞.

Proof. The kernel r ν(a.) solves the Volterra equation r ν(a.) = K ν
(a.) + K(a.) ∗ r ν(a.). By Lemma 21,

its solution is

r ν(a.) = K ν
(a.) + r(a.) ∗ K ν

(a.).

Using Proposition 47, we know that r(a.) = γ (a) + ξ(a.), with ξ(a.) ∈ Vλ. Furthermore using that
γ (a) ∗ K ν

(a.) = γ (a)[1 − H ν
(a.)], we deduce that:

r ν(a.) = γ (a) + K ν
(a.) + ξ(a.) ∗ K ν

(a.) − γ (a)H ν
(a.).

Using that λ < f (σ0) (Assumption 41) we find

∥H ν
(a.)∥λ,∞ = sup

t,s
H ν

(a.)(t, s)eλ(t−s) < ∞, ∥K ν
(a.)∥λ,∞ = sup

t,s
K ν

(a.)(t, s)eλ(t−s) < ∞.

We obtain

∀t ≥ s, |r ν(a.)(t, s) − γ (a)|eλ(t−s)

≤ ∥K ν
(a.)∥λ,∞ + γ (a)∥H ν

(a.)∥λ,∞ + eλ(t−s)
∫ t

s
|ξ(a.)|(t, u)K ν

(a.)(u, s)du

≤ ∥K ν
(a.)∥λ,∞ + γ (a)∥H ν

(a.)∥λ,∞ + ∥K ν
(a.)∥λ,∞

∫ t

s
|ξ(a.)|(t, u)eλ(t−u)du

≤ ∥K ν
(a.)∥λ,∞ + γ (a)∥H ν

(a.)∥λ,∞ + ∥K ν
(a.)∥λ,∞∥ξ(a.)∥λ,1.

Using the estimate of ∥ξ(a.)∥λ,1 given by Proposition 47, we deduce the result. □
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9. Long time behavior for small interactions: proof of Theorem 9

9.1. Some uniform estimates

We now turn to the proof of Theorem 9. It is convenient to first extend the results obtained
in Section 7: we need uniform estimates in the input current a. In this section, we grant
Assumptions 2, 3, 4.

Lemma 50. Let ā > 0. It holds that

inf
a∈[0,ā]

λ∗

a > 0.

Proof. We define the function g related to the first zero of Ĥa by

∀a ∈ [0, ā], g(a) := − sup{R(z)| Ĥa(z) = 0, R(z) > − f (σ0)}.

By convention, g(a) = f (σ0) if Ĥa is not null on ℜ(z) > − f (σ0). By definition of λ∗
a and

by the results of Section 7 we know that g(a) ∈ (0, λ∗
a]. So, to prove the lemma, it suffices to

show the following result

Claim g is lower semi-continuous, that is

∀a0 ∈ [0, ā], lim inf
a→a0

g(a) ≥ g(a0).

Proof of the claim. Choose a0 ∈ [0, ā]. We have g(a0) > 0. Fix λ ∈ (0, g(a0)). Thanks to
Lemma 36, one can find R > 0, such that for all a ∈ [0, ā], for all z with R(z) ∈ [−λ, 0]
and I(z) /∈ [−R, R], we have Ĥa(z) ̸= 0. Denote U = {z ∈ C,R(z) ∈ [−λ, 0], |I(z)| ≤ R}.
By definition of g(a0), we have Ĥa0 ̸= 0 on U and the continuity of z ↦→ Ĥa0 (z) yields
infz∈U |Ĥa0 (z)| > 0. Moreover, (a, z) ↦→ Ĥa(z) is continuous on [0, ā] × U , so one can find
δ > 0 such that for all |a − a0| ≤ δ, z ∈ U , we have |Ĥa(z)| ̸= 0. and so g(a) ≥ λ. We have
proved that ∀λ ∈ (0, g(a0)), lim infa→a0 g(a) ≥ λ. It ends the proof. □

Proposition 51 (Whole-line Palay–Wiener, an Extension). Let ā > 0 and for all a ∈ [0, ā], let
ka ∈ L1(R,R). Assume that

1. ∃η ∈ L1(R,R+) s.t. ∀a ∈ [0, ā], ∀0 < ϵ < 1,∀t ∈ R, |ka(t) − ka(t − ϵ)| ≤ ϵη(t).
2. ∃θ ∈ L1(R,R+) s.t. ∀a ∈ [0, ā], ∀t ∈ R : |ka(t)| ≤ θ (t).
3. ∀a ∈ [0, ā], ∀y ∈ R let k̂a(iy) =

∫
R e−iyt ka(t)dt. We assume that

inf
a∈[0,ā],y∈R

|1 − k̂a(iy)| > 0.

Then for all a ∈ [0, ā], there exists a function xa ∈ L1(R,R) satisfying the equation
xa = ka + ka ∗ xa and

sup
a∈[0,ā]

∥xa∥L1 < ∞.

Proof. We follow the proof of Theorem 4.3 in [20, Chap. 2] and emphasis on the differences.
Let ζ (t) :=

1
π t2 (1−cos(t)) be the Fejer kernel; its Fourier transform is ζ̂ (iy) = (1−|y|)1{|y|≤1}.

For any p ≥ 1, set ζp(t) := pζ (pt) and ∀a ∈ [0, ā],

k∞

a (t) := ka − ζp ∗ ka .
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Claim 1 There is an integer p > 0 such that ∀a ∈ [0, ā], ∀|y| ≥ p, we have

∥k∞

a ∥L1 ≤ 1/2 and k̂∞

a (iy) = k̂a(iy).

Proof of the claim. It is clear that with this choice of ζ , ∀|y| ≥ p, k̂∞
a (iy) = k̂a(iy). Moreover,

using
∫
R ζp(s)ds = 1, we have

∥k∞

a ∥L1 =

∫
R

⏐⏐⏐⏐∫
R

ka(t)ζp(s) − ka(t − s)ζp(s)ds
⏐⏐⏐⏐ dt

≤

∫
R
ζ (u)

∫
R

|ka(t) − ka(t −
u
p

)|dtdu.

We used the Tonelli–Fubini Theorem (everything is non-negative). Let R > 0 such that∫
R\[−R,R] ζ (u)du ≤

1
8∥θ∥L1

. It follows that

∥k∞

a ∥L1 ≤ 1/4 +

∫ R

−R
ζ (u)

∫
R

|ka(t) − ka(t −
u
p

)|dtdu

≤ 1/4 +

∫ R

−R

(∫
R

|
u
p
|η(t)dt

)
du

≤ 1/4 +
R2

p
∥η∥L1 .

The claim is proved by choosing an integer p ≥ 4R2
∥η∥L1 .

Along the same idea, we define β(t) := 4ζ (2t) − ζ (t) =
1
π t2 (cos t − cos 2t). Note that

∀|y| ≤ 1, we have β̂(iy) = 1. Then for all δ > 0, we set βδ(t) = δβ(δt) and

∀y0 ∈ R,∀t ≥ 0, k y0,δ
a (t) =

∫
R

(βδ(t − s) − βδ(t))eiy0(t−s)ka(s)ds.

Claim 2 Given ϵ > 0, one can find a constant δ > 0 such that: ∀y0 ∈ R,∀a ∈ [0, ā],

∀|y − y0| ≤ δ, k̂a(iy) = k̂a(iy0) + k̂ y0,δ
a (iy) and ∥k y0,δ

a ∥L1 ≤
ϵ

2
.

Proof of the claim. By definition of k y0,δ
a it holds that

∀y ∈ R, k̂ y0,δ
a (iy) = β̂δ(i(y − y0))(̂ka(iy) − k̂a(iy0)).

Moreover, β̂δ(iy) = 1 if |y| ≤ δ and consequently the first point of the claim is satisfied.
Furthermore,∫

R
|k y0,δ

a (t)|dt ≤

∫
R

|ka(s)|
∫
R

|β(t − δs) − β(t)|dtds

≤

∫
R
θ (s)

∫
R

|β(t − δs) − β(t)|dtds.

The right hand side does not depend on y0 nor a and goes to zero as δ goes to zero. This
proves the second point of the claim.

It follows from Claim 1 that ∀a ∈ [0, ā], the equation x∞
a = ka + k∞

a ∗ x∞
a has a unique

solution x∞
a ∈ L1(R) with ∥x∞

a ∥L1 ≤ 2∥θ∥L1 . Moreover, we have

∀a ∈ [0, ā],∀|y| ≥ p, x̂∞

a (iy) =
k̂a(iy)

1 − k̂a(iy)
.



Q. Cormier, E. Tanré and R. Veltz / Stochastic Processes and their Applications 130 (2020) 2553–2595 2591

Similarly, we define ϵ := infa∈[0,ā],y∈R |1 − k̂a(iy)| > 0 and apply the second claim. Given
y0 ∈ R and a ∈ [0, ā], let Ay0

a =
1

1−k̂a (iy0)
. We have 1 − k̂a(iy) = 1 − k̂a(iy0) − k̂ y0,δ

a (iy) =

1
A

y0
a

(1 − Ay0
a k̂ y0,δ

a (iy)). So,

∀|y − y0| ≤ δ,
k̂a(iy)

1 − k̂a(iy)
=

Ay0
a k̂a(iy)

1 − Ay0
a k̂ y0,δ

a (iy)
.

Using ∥Ay0
a k y0,δ

a ∥L1 ≤ 1/2, we can define the solution of x y0
a = Ay0

a ka + Ay0
a k y0,δ

a ∗ x y0
a and we

have

∥x y0
a ∥L1 ≤

2
ϵ
∥θ∥L1 .

Consequently, for all y with |y − y0| ≤ δ we have

x̂ y0
a (iy) =

k̂a(iy)
1 − k̂a(iy)

.

Furthermore, still following [20], one can find an integer m > 0 such that: ∀a ∈ [0, ā],
∀ j ∈ Z, | j | ≤ mp, there exists a function x j/m

a ∈ L1(R) with ∥x j/m
a ∥L1 ≤

2
ϵ
∥θ∥L1 such

that

∀|y − j/m| ≤ 1/m, x̂ j/m
a (iy) =

k̂a(iy)
1 − k̂a(iy)

.

We define ψ j (t) =
1
m e−i j t/mζ (t/m). We have ∥ψ j∥L1 = 1. Its Fourier transform is given by

ψ̂ j (iy) =

{
0 if |y − j/m| > 1/m
1 − m|y − j/m| otherwise.

We set

xa =

∑
| j |≤mp

ψ j ∗ (x j/m
a − x∞

a ) + x∞

a .

It is clear that xa ∈ L1(R) and that

sup
a∈[0,ā]

∥xa∥L1 ≤ mp
(

2
ϵ
∥θ∥L1 + 2∥θ∥L1

)
+ 2∥θ∥L1 < ∞.

With this choice of ψ j , ∀y ∈ R, x̂a(iy) =
k̂a (iy)

1−k̂a (iy)
and by uniqueness of the Fourier transform,

we conclude that xa is the solution of xa = ka + ka ∗ xa . □

As a consequence of the previous result, we have

Corollary 52. Let ā > 0, define λ∗
= infa∈[0,ā] λ

∗
a (λ∗ > 0 by Lemma 50). Let 0 < λ < λ∗

and consider ra the solution of the Volterra equation ra = Ka + Ka ∗ ra . By Proposition 37, it
holds that ra = γ (a) + ξa for some ξa ∈ Lλ. Then we have supa∈[0,ā] ∥ξa∥λ,1 < ∞.

Proof. Recall (see proof of Proposition 37) that ξa(t) = e−λtξa,−λ(t) and so ∥ξa∥λ,1 =

∥ξa,−λ∥L1 . We now prove that Proposition 51 applies to ξa,−λ. Indeed, it solves

ξa,−λ = Ka,−λ + Ka,−λ ∗ ξa,−λ,

with Ka,−λ(t) := eλt Ka(t)1{t≥0}. It remains to show that Ka,−λ fulfills the assumptions of
Proposition 51.
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1. We use supa∈[0,ā] Ka(t) ≤ f (ϕā
t (0))H0(t) and supa∈[0,ā] |ϕ

a
t (0) − ϕa

t−ϵ(0)| ≤ ϵC ā
b .

2. For all t ≥ 0 and a ∈ [0, ā], we have

Ka,−λ(t) ≤ θ (t) := eλt f (C ā
t )H0(t)1t≥0 ∈ L1(R).

3. We have K̂a,−λ(iy) = K̂a(−λ+ iy). We conclude by Lemmas 50 and 36. □

9.2. Proof of Theorem 9

We are now ready to give the proof of the main theorem.

• Step 1 Recall that Eq. (25) gives
d
dt

E f (X t ) ≤
1
2

[r̄ (J )2
− E2 f (X t )],

where (X t )t≥0 is the solution of the non-linear equation (2) and the function J ↦→ r̄ (J )
is non-decreasing. Using Proposition 23 with κ := J r̄ (J ) + 1, there is a non-decreasing
function J ↦→ ā(J ) such that:

∀J, s ≥ 0, ∀(at )t≥s ∈ C([s,∞),R+),
[sup

t≥s
at ≤ ā(J ) and Jν( f ) ≤ ā(J )] H⇒ sup

t≥s
Jr ν(a.)(t, s) ≤ ā(J ).

Moreover, it holds that ∀J ≥ 0, J r̄ (J ) < ā(J ).
• Step 2 We define

λ∗
:= inf

a∈[0,ā(Jm )]
λ∗

a,

where Jm > 0 is defined in Proposition 8. Lemma 50 gives λ∗ > 0. We now fix λ such
that 0 < λ < λ∗.

• Step 3

– Using Corollary 52, we know that the solution of the Volterra equation ra =

Ka + Ka ∗ ra is ra = γ (a) + ξa with ξa ∈ Lλ and that:

ξ∞(J ) := sup
a∈[0,ā(J )]

∥ξa∥λ,1 < ∞.

It is clear that J ↦→ ξ∞(J ) is non-decreasing (as J ↦→ ā(J ) is).
– One can find a function k∞

: R+ × R+ → R+, non-decreasing with respect to its
two parameters, such that for all (at ) ∈ C(R+,R+) we have:

sup
t≥0

at ≤ ā H⇒ ∥K ν
(a.)∥λ,∞ ≤ k∞(ν( f ), ā) < ∞.

Moreover, one can find a constant h∞ (only depending on λ, b and f ) such that for
all (at ) ∈ C(R+,R+), we have

∥H ν
(a.)∥λ,∞ ≤ h∞.

These two points follow from λ < f (σ0), Assumption 2, Remark 12(2) and 13.
– The function ηā of Lemma 45 satisfies

∥ηā∥1 < ∞, ā ↦→ ∥ηā∥1 is non-decreasing,

and consequently the function J ↦→ ∥ηā(J )∥1 is non-decreasing.
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– Finally the normalization γ is a non-decreasing function of a (see (31)) and it
follows that

∀a ∈ [0, ā(J )], γ (a) ≤ γ (ā(J )).

• Step 4 Let ν be a probability measure such that ν( f ) ≤ r̄ (Jm) + 1. Remind that for all
J ∈ (0, Jm) the equation aγ−1(a) = J has a unique solution a∗(J ) ∈ [0, ā(Jm)]. We now
apply Proposition 49 with α = 1/2. Define:

C(J ) :=
1

2∥ηā(J )∥1(1 + ξ∞(J ) +
γ (ā(J ))
λ

)

D(J ) := 2(1 +
γ (ā(J ))

2λ
+ ξ∞(J ))k∞(r̄ (Jm) + 1, ā(J )) + γ (ā(J ))h∞.

From Step 3, it is clear that the functions J ↦→
1

C(J ) and J ↦→ D(J ) are non-decreasing.
Consequently, we can find a constant J ∗

∈ (0, Jm) such that

∀J ∈ [0, J ∗],
J D(J )
C(J )

≤ 1.

Proposition 49 tells us that for every 0 ≤ J ≤ J ∗, given any (at )t≥0 ∈ C(R+,R+) with
supt≥0 at ≤ ā(J ) and such that

∀t ≥ 0, |at − a∗(J )| ≤ C(J )e−λt ,

it holds

∀t ≥ 0, |Jr ν(a.)(t, 0) − a∗(J )| ≤ C(J )e−λt .

• Step 5 Let now J ∈ (0, J ∗] be fixed (the case J = 0 is already treated by Proposition 30).
We assume the initial condition ν of (2) satisfies Jν( f ) ≤ ā(J ) and that ν( f ) ≤ r̄ (Jm)+1
(we shall come back to the general case in Step 6). We define recursively an

∈ C(R+,R+)
by

∀t ≥ 0, a0(t) := a∗(J ) and ∀n ≥ 0, an+1(t) := Jr ν(an .)(t, 0).

By Step 4 and by induction, it holds that:

∀n ≥ 0, ∀t ≥ 0, |an(t) − a∗(J )| ≤ C(J )e−λt .

We deduce that:

∀t ≥ 0, |E f (X t ) − γ (a∗(J ))| ≤ |E f (X t ) − r ν(an .)(t, 0)| +
1
J

|an+1(t) − a∗(J )|

≤
1
J

|JE f (X t ) − an+1(t)| +
C(J )

J
e−λt .

The Picard iteration studied in Part 4.4 shows that

∀t ≥ 0, lim
n→∞

|JE f (X t ) − an(t)| = 0.

We have proved that

∀t ≥ 0, |E f (X t ) − γ (a∗(J ))| ≤
C(J )

J
e−λt .

• Step 6 We now prove that there exists s ≥ 0 such that E f (Xs) ≤ min( ā(J )
J , r̄ (Jm)+1). By

Step 1, we have lim supE f (X t ) ≤ r (J ). Since r (J ) < a(J )/J and since r (J ) ≤ r (Jm),
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the conclusion follows. Consequently, Step 5 can be applied to the process (X t )t≥s starting
with ν = L(Xs). This proves the convergence of the jump rate.

The convergence of the law of X t to the invariant measure then follows from Proposition 29.
This ends the proof of Theorem 9.

Remark 53. There is some freedom in the above construction of the constants λ and J ∗.
We can choose any λ in [0, λ∗) and the value of J ∗ depends both on λ and on a parameter
α ∈ (0, 1), here chosen to be equal to 1/2 (see Step 4). We may optimize this construction to
get either J ∗ or λ as large as possible.
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