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Abstract. We study the long-time behavior of some McKean—Vlasov stochastic differential equations used to model the evolution
of large populations of interacting agents. We give conditions ensuring the local stability of an invariant probability measure. Lions
derivatives are used in a novel way to obtain our stability criteria. We obtain results for non-local McKean—Vlasov equations on R4 and
for McKean—Vlasov equations on the torus where the interaction kernel is given by a convolution. On RY, we prove that the location
of the roots of an analytic function determines the stability. On the torus, our stability criterion involves the Fourier coefficients of the
interaction kernel. In both cases, we prove the convergence in the Wasserstein metric W with an exponential rate of convergence.

Résumé. On étudie le comportement en temps long d’équations non-linéaires au sens de McKean—Vlasov. Ces équations sont utilisées
pour modéliser les comportements de grandes populations d’agents en interaction. On donne des critéres garantissant la stabilité locale
d’une mesure de probabilité invariante. Pour ce faire, on utilise de maniere novatrice les dérivées de Lions. On obtient des résultats
pour des équations de McKean—Vlasov non locales sur R4, ainsi que pour des équations de McKean—Vlasov sur le tore pour lesquelles
le noyau d’interaction est donné par une convolution. Sur R9, on montre que la stabilité est déterminée par 1’emplacement des zéros
d’une fonction holomorphe. Sur le tore, notre critere de stabilité fait intervenir les coefficients de Fourier du noyau d’interaction. Dans
les deux cas, on montre la convergence vers la mesure de probabilité invariante a vitesse exponentielle pour la métrique de Wasserstein
wy.
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1. Introduction

We are interested in the long-time behavior of the solutions of a class of McKean—Vlasov stochastic differential equations
(SDE) of the form:

dX;)Z (X;),Mt)dt+0'dBt,
(D
e :Law(X;’), o =v.

In this equation, (B;);>¢ is a standard R?-valued Brownian motion, o is a deterministic matrix, and v is the law of
the initial condition X, assumed to be independent of (B;),>o. McKean—Vlasov equations appear naturally as the limit

N — oo of the following particle system (X ;*N );>0> solution of
2) dx;V =v(xiN, uNydr +odBiN, 1<i<N,

where u2 is the empirical measure u¥ = % Z;VZI 8y JN and (B[N );>0 are N independent standard Brownian motions.
We refer to [45] for an introduction to this topic.

Such particle systems and their mean-field counterparts are used in a wide range of applications such as plasma
physics [22,32], fluid mechanics [25], astrophysics (particles are stars or galaxies [51]), bio-sciences (to understand the
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collective behavior of animals [8]), neuroscience (to model assemblies of neurons, such as integrate and fire neurons [20,
26] or FitzHugh—Nagumo neurons [39]), opinion dynamics [18] and economics [10].

In these applications, one important question concerns the long-time behavior of the solutions. As such, the ergodic
properties of McKean—Vlasov equations (1) have been studied in many different contexts and approaches.

Two families of assumptions are known to ensure that (1) admits a unique, globally attractive invariant probability
measure. The first type of assumption deals with kernels given by V(x, u) = —VV(x) — VW % u(x), where V, W have
suitable convexity properties. The first results in this direction were obtained in [3,4] in dimension one. In larger dimen-
sions, [41,50] proved the convergence uniformly in time of a suitable particle system towards the mean-field equation.
As such, they obtained the ergodicity of the McKean—Vlasov equation from the ergodicity of the particle system. These
uniformly in time propagation of chaos arguments have been used wisely; see for instance [19,31] for recent results in this
direction. These results have also been obtained by using functional inequalities [5,12]: the idea is to define a measure-
valued functional (known as the entropy or free energy), which only decreases along the trajectories of the solution of (1).

The second kind of assumption involves weak enough interactions. When the dependence of 1V with respect to the
measure is sufficiently weak, one expects global stability because this situation can be seen as a perturbation of the case
without interactions. As such, it is possible to extend techniques from ergodic Markov processes to the case of weak
interactions. This includes, for instance, coupling techniques [1,9,23,24,27] or Picard iterations in suitable spaces [16].

It is also well-known that, in general, such global stability results cannot hold because (1) may have multiple invariant
probability measures and periodic solutions [34,43,49]. These examples motivate the current question of the paper, namely
the study of the local stability of a given invariant probability measure of (1). That is, being given v, an invariant
probability measure of (1), we address the following question:

Is there exist an open neighborhood of v such that for all initial conditions v within this neighborhood, the law of
X[ converges to v, as t goes to infinity? If so, for which metric does the convergence hold, and what is the rate of
convergence?

Such local stability results can be obtained via partial differential equation (PDE) techniques, using that the marginals
of the non-linear process solve a non-linear PDE (the Fokker—Planck equation). The strategy is to linearize the non-linear
PDE around v, to study the existence of a spectral gap for the linear equation in appropriate Banach spaces, and to use
perturbation techniques to obtain the convergence for the non-linear PDE. We refer to [33,40] for an overview of these
techniques. When the non-linear PDE admits a gradient flow structure, it is also possible to study the local stability of an
invariant probability measure using functional inequalities; see [11,47,48]. In [47], the author study the local stability of
an invariant probability measure in weighted L? norm. The result is obtained assuming a spectral condition related to the
positivity of the Hessian of the free energy functional, evaluated at the invariant distribution.

Our approach differs from these two methods on several points. We do not rely on the non-linear Fokker—Planck PDE
nor need a gradient flow structure. Instead, we use directly the stochastic representation (1). Our strategy is to differentiate
the interaction kernel with respect to the initial probability measure, in the neighborhood of v,. There are several notions
of derivation with respect to probability measures (see [10]): we use here the Lions derivatives. We denote by P> (RY) the
set of probability measures on R? having a second moment. For all x € R? and # > 0, we consider the function

Pz(Rd) v V(x,Law(X})) =:v) (v) € R?,
where X/ is the solution of (1) starting with law v at time 0. We prove that under suitable assumptions, this function is
Lions differentiable at v, meaning that for all v € P, (Rd), we have

1/2

V(x,Law(X})) = V(x, Vo) + Edy v} (Vo) (Z0) - (Z — Zo) + o((E| Z — Zo|2) / )

In this equation, Z, Zg are any random variables defined on the same probability space, with laws equal to v and vs,. We
write E(Z — Zo|Zo) = h(Zy), where h is a deterministic function from R? to R?. As such, the function 4 encodes the
correlations between the initial conditions Z and Zj. It follows from the Cauchy—Schwarz inequality that E|A(Zg)|*> <
E|Z — Zo|? < co. Therefore, h € L2(vs). We define the linear operator £2; : L% (Vo) = L% (vso) by

Q;(h) :=x > Ed,v] (Voo ) (Z0) - h(Zp).

The fact that Q;(h) € L?(vso) for all h € L?(vs) is not granted apriori and will follow from our assumptions on the
function V. So we have (recall that v = Law(Z) and E(Z — Zy|Zy) = h(Zy))

V(. Law(X})) = V(x. voo) + 2 () () +0((EIZ — Zol?) 7).

Our spectral conditions under which we prove that vy, is locally stable can be stated in terms of the decay of the function
t — €2, as t goes to infinity. We show that the integrability of this function on R implies the stability of v,. In addition,
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the decay of # — ; as ¢ goes to infinity gives precisely the rate of convergence of Law(X;) towards ve, in Wasserstein
metrics. Crucial to our analysis, we provide an explicit integral equation to compute this function €2;. To do so, we
consider the linear process (Y;"),. associated with (1) and v, defined as the solution of

dy) = V(Y,”, voo) dt + o dB;,
starting from Law(Yé’ ) = v. We define similarly for x € R4 and ¢ > 0 the function
Pz(Rd) 5v > uf (v):=V(x, Law(Y}")).
Under non-restrictive assumptions, u; is Lions differentiable at v, and we can define
Vhe L?(vs), ©O;(h):=x+> Ed,u; (voo)(Zo) - h(Zo).

We prove the following key relation between ®; and €2;
1
Viz0, @ =0uh+ [ O () s
0

That is, €2 is a solution of a Volterra integral equation whose kernel is given by ®: in the language of integral equations,
€2 is the resolvent of ®. This relation is helpful because it is easier to get estimates on u;, which involves a linear Markov
process, rather than getting estimates on v;’, which involves the solution of the McKean—Vlasov equation (1). In particular,
this relation allows to deduce the decay properties of Q2 from properties of ®, using Laplace transform. We obtain our
stability results for the Wasserstein W metric.

The contributions of this work are the following. First, in Section 2, we consider dynamics of the form V(x, u) =
b(x)+ [ga F(x, y)u(dy), for some smooth functions b : R? — R? and F : R? x R? — R?. The function b is assumed to
be confining. Our main result, Theorem 2.5, states that the stability of an invariant probability measure is determined by
the location of the roots of an explicit analytic function associated with the dynamics. Stability holds when all the roots lie
on the left half-plane, and we prove convergence in Wassertein metric W; with an exponential rate. Our result shows that
the stability is completely determined by a discrete set, this set being given by the zeros of an analytic function associated
to the underlying Markov process. Note that we do not require any structural assumption on b and F': in particular, we
do not require any convexity assumption on the coefficients. Our stability criterion is analogous to the Jacobian stability
criterion for ODE, for which the location of the zeros of the characteristic polynomial determines the stability.

Second, in Section 3, we consider a McKean—Vlasov equation on the torus T .= R/ (27rZ))d, with an interaction
kernel given by a convolution: V(x, u) = — de VW (x — y)u(dy), where W is a smooth function from T to R. We

assume that o = /2811, for some B > 0, where I, is the identity matrix. This setting covers many interesting models;

see [11]. We study the stability of the uniform probability measure U (dx) := (2‘::) 7. Our second main result, Theorem 3.2,

states that when il’lfnezd\{o} In|>(B + W(n)) > 0, W(n) being the n-th Fourier coefficient of W, then U is locally stable
for the Wp metric. Our result complements the results of [11], for which static bifurcations are studied: in particular,
we exhibit the same critical parameter. In both parts, we use the strategy described above, using Lions derivatives and
probabilistic tools. The criteria we obtain are optimal: violations of the criteria occur strictly at bifurcation points.

The strategy presented in this work also applies to mean-field models of noisy integrate-and-fire neurons: in [15], we
study the stability of the stationary solutions of such a mean-field model of noisy neurons by applying the methodology
developped here. In addition, periodic solutions via Hopf bifurcations are studied in [17]. For the sake of clarity, we
restrict here ourselves to a diffusive setting.

Finally, we mention an important open problem concerning the long-time behavior of the particle system (2). On the
one hand, general conditions are known to ensure that the particle system is ergodic. On the other hand, numerical studies
show that this particle system can have metastable behavior in the sense that the convergence of the empirical measure
,ufv towards its invariant state can be very slow when N is large. The locally stable invariant probability measures of
the non-linear equation (1) are good candidates to be metastable states of the particle system (2). Characterizing those
metastable states in quantitative terms is a challenging mathematical question. Recent partial results have been obtained
in this direction [2,7,14,21,37], and we hope to progress on this question in future works.
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2. McKean-Vlasov equations on R?
2.1. Main result

Let P;(R?) be the space of probability measures on R? with a finite first moment. We consider the following McKean—
Vlasov equation on R¢:

3) dX; =b(X/)dr + f F(X},y)u(dy)dt + o dB; with u, = Law(X}).
Rd

The initial condition X(‘)’ has law v € P; (R?). Here, (By);>0 is a d-dimensional standard Brownian motion, o € My (R) is
a constant d x d matrix with deto > 0.

Assumption 2.1. The functions b : R — R? and F : R — R? are C?, b is globally Lipschitz, and the derivatives of
F are bounded (b and F are not assumed to be bounded themselves):

Vi, jelis...dP, 110y Flloo + 05 o Fl o < 00

This ensures in particular that (3) has a unique path-wise solution. Let vy, € P;(R?) be an invariant probability measure
of (3), that is:

Vi >0, Law(X;”)=rvx.

Denote by «(x) the interaction term under vo:

4) vx eRY,  a(x):= /d F(x, y)voo(dy).
R

Each invariant probability measure of (3) is characterized by its associated function «, and we sometimes denote by v,
such invariant probability measure to emphasize the dependence on «. We assume:

Assumption 2.2. There exists § > 0 and R > 0 such that
Vx,x e RY, ’x —x" >R = (x—x)[b+a)x)—O+a)(x)]= —ﬂ’x —x”z.

Remark 2.3. In particular, this is satisfied provided that F is bounded (or independent of x) and there exists § > 0 and
R > 0 such that:
|x—x’| >R = (x—x’)'(b(x)—b(x’))5—,3|x—x’|2.

Let (¥"), - the solution of the linear SDE

) Ay =b(Y{)dr + a(Y)dt + o dB;.

Note that vs, = Vg is also an invariant probability measure of this linear SDE. In addition, a result of Eberle [23] (see (9)
below) ensures that vy is the unique invariant probability measure of (5).
Consider H := L?(vs) the Hilbert space of measurable functions / : R¢ — R? satisfying:

k13, ::/|h<y)\2voo<dy> <0

We denote by L(#) the space of bounded linear operators from # to itself. Key to our analysis is the following family of
bounded linear operators ®; € L(H), t > 0:

(6) YheH, O:h)(x):= /Rd VyEyF(x, Y,"‘) ~h()vE, (dy).

The notation E, F(x, ¥*) means that the initial condition of (¥*) is set to be y € R? (that is Y5 = y). In addition,
VyEy F(x, Y) is the Jacobian matrix of y = I, F'(x, Y/). The result of Eberle [23] (see (10) below) implies that there
exists k4 > 0 and C > 0 such that

(7) VheM, ||©/h)|, <Ce ™ |h|y.
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Denote by I € L(H) the identity operator. Let D = {z € C, 0(z) > —«}. For all z € D, consider the Laplace transform
of O;:

R o
O() = / e Vo, dt.
0
We recall some properties of this operator-valued function.

Proposition 2.4. We have:

1. Forall z € D, @(z) € L(H) is an Hilbert—Schmidt operator. In particular, @(z) is a compact operator.
2. D>z @(z) is an analytic operator-valued function, and (I — (:)(z))7 exists forall z € D\ S, where S is a discrete

subset of D. In addition, (I — (:)(z))_1 is meromorphic in D, holomorphic in D\ S.
3. The function D > z +— det(I — ©(z)) € C is analytic, where det is the regularized Fredholm determinant. In addition,
I — ©(z) is invertible if and only if det(I — ©(z)) # 0.

Proof. By Fubini, we have
O@)(h) =x > fRd K (x, y)h(y)veo(dy),

where K, (x, y) := fooo e‘Z’VyIEyF(x, Y/)dt. Using (10), it holds that SUP, yeRd |K;(x,y)| < oo forall z € D. Therefore,
K.(-,-) € L2(R? x R?, vo ® Vo) and so Theorem VI.23 in [42] applies and gives the first point. For 9% (z) large enough,
it holds that ||(:)(z)||7.,5 < 1. Therefore, I — O(z) is invertible provided that %(z) is large enough, the inverse is given by
its Neumann series. So the second point follows from the analytic Fredholm theorem, see Theorem VI.14 in [42]. Finally,

the third point is a fundamental result of the theory of Fredholm determinants for Hilbert—Schmidt operators, see for
instance [44]. O

Our main result is

Theorem 2.5. Consider v, an invariant probability measure of (3) and let « be given by (4). Assume that Assump-
tions 2.1 and 2.2 hold. Define the “abscissa” of the rightmost zeros of det(I — ©(z)):

®) —3":=sup{R(2) | z € D, det(I — O(z)) =0}.

Assume that )/ > 0. Then v is locally stable: there exists C,e > 0 and A € (0,)') such that for all v € P;(RY) with
Wi(v, veo) < €, it holds that

Vi >0, Wi(Law(X}), vee) < CWy(v, Voo)e M.
2.2. Remarks and examples

We now give explanations on Theorem 2.5, in particular on the spectral assumption involving (8). From now on, the
constants may vary from one line to the other.

Gradients bounds
We denote by (Yta’a") the solution of (5) with initial condition Yg % — x. Under assumptions 2.2, Theorem 1 in [23]
applies: there exists k, > 0 and C, > 1 such that forall x, y € RY andallt >0,

©) Wi (Law(Y2%), Law(¥;"”)) < Cue ™ |x — y.
We deduce from this inequality the following gradient bound. For all f € C!(R%):
(10) Vy eRY,VLEy (V)] < CllV flloce ™.

In particular, by choosing f = F(x, -), we obtain the estimate (7). Note that it is possible to get gradient bounds similar
to (10) under less restrictive assumptions on b and o’; see [46].
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On the spectral condition
We consider the following bounded linear operator 2; € £(?) by taking the Neumann series:

(11) VheH. Qh):=Y 0% (h),

i>1

where the linear operators @fw) are defined recursively by

Vi >0, @?”*”(h):f ©,—s (0% (1)) ds, and ©F'(h) = 0O, (h).
0

The series (11) converges uniformly on any compact [0, T'] for T > 0. The operators 2; and ®; satisfy the following
Volterra integral equation:

t
VheH, @ =0uh+ [ Orm(@n)ds

0

(12) ,
—om+ [ 2(Oum)as

0

We denote by [|€2/]| £, the operator norm of €2;:

1921l 2y = S |2 |5,
’H.

Then the spectral condition A" > 0 is equivalent to the exponential decay of 7 — || || £ ()

Proposition 2.6. The two following statements are equivalent

1. M >0, where \' is given by (8).
2. 3n > 0 such that sup,=o e [|Q || 31y < 0.

Proof. We first show that (b) implies (a): by assumption, there exists A € (0, K*) such that z — Q(z) is an analytlc
operator- valued function on (z) > —A. In view of (12), we have for R(z) > —A, Q(z) = O(2) + O) - Q(z) = O(2) +
Q(z) @(z),and )

I=(I+Q@)(-0@)=(-0@)+20).

Therefore, I — @(z) is invertible for all R(z) > —A, and consequently A" > A > 0.

We then show that (a) implies (b): this follows from a Paley—Wiener theorem. Let A € (0, 1) and define K, := e ©,
and R, := ;. It holds that K € L! (Ry; L(H)) (because A < ky) and I — [?(z) is invertible for all :(z) > 0 (because
A < A). Therefore, by [30, Ch. 2, Th. 4.1]," it holds that R € L'(R,; £(#)). Using the estimate (7) and (12), we find that

t
||, < Ce™ hllz +C /0 e Qs ll ol 12 ds
t
<Cllhlxu <€_K*l +e M / Nl £ ds)
0
OO A
SC”h”H(l +/ ||Rs||£(7{)ds>e "
0
This shows that sup, M| ll £(#) < oo. This ends the proof. (Il

IThe result in [30] is stated and proved for matrix valued operators. The extension to Hilbert—Schmidt operators is straightforward by the exact same
arguments.
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The spectral condition is necessary
Let & € ‘H be fixed and let Zy be a random variable of law vo,. For € € R, let v, := Law(Zy + €h(Zp)). We will see that
the operator €2; admits the following probabilistic representation (see Remark 2.23 below):

(13) Vi >0, Q,(h)(x):1ir%§de(x,y)(Law(x;’f)—voo)(dy), xeRY,
€—> R

where (X ;’ €) is the solution of the McKean—Vlasov equation (3) starting with law v.. We have by the Cauchy—Schwarz
inequality

Wi (ve, voo) < €E|h(Zo)| < €llllp.

Assume that the conclusion of Theorem 2.5 holds. Then there exists C, A > 0 such that for all € small enough,
Wi (Law(X,%), veo) < Cee ™ || h13.
We deduce that:

Vx e RY,

fR F ) (Law(X;") = voo) (dy) | < CellVy Fllooe ™ 13-
Therefore,
|Q: ()| o, < CIIVyFllooe™* 1A l13

Using Proposition 2.6, we deduce that A’ > 0, where A" is given by (8). In other words, the spectral condition A > 0 is
necessary to have stability in Wy norm.

Structural stability with convex coefficients

The classical situation where stability is known to hold globally is the following: assume that there exist functions V, F :
R? — R such that b(x) = —VV(x) and F(x,y)=—VW(x — y). Assume that W is convex and even and that V is
strongly convex:

(14) 30 >0,Vx eRY, W(x)=W(—x), V2W(x)>0, and V>V(x)>6I,.
Then, by [13, Th. 7], it holds that
Vi >0,Yv, u e P2(R?), Wy(Law(X}),Law(X}')) < e "2 Wa (v, w).

Therefore, these structural conditions ensure that (3) has a unique invariant probability measure, which is globally stable
in W, norm. We show that our spectral condition is satisfied under these conditions.

Lemma 2.7. Under the structural assumption (14), it holds that ) > 0, A’ given by (8), and so Theorem 2.5 applies.

Proof. Let vy be the unique invariant probability measure of (3). Let # € H, € € R and let ve = L(Zo + €h(Zy)), where
Law(Zy) = voo. We have

‘ /R VWG - y)(Law(x)) - voo)(dy)' < [V2W ] Wi (Law(X2%). voo)

= [V2W]  Wa (Law(X}), vec)

< |V*W| e " Wa(ve, voo)

_ 2 —
< Ce "2\ [Elen(Zo)|” = Clele /|| h]|3.

Therefore, by (13), we have
VheH, || <Ce ?|h|y.

So Proposition 2.6 applies and A" > 0. ([
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Case of weak interactions
One way to check that the spectral condition A’ > 0 holds, A’ given by (8), is to compute the L' norm of ;. Recall that

11123y = SUP <1 1190 () 134
Lemma 2.8. Assume that fooo 1©¢ll£(2¢)dr < 1. Then A’ > 0 and so v is locally stable.

Proof. Recall that by (7), it holds that sup, e!|O;|l () < o0. Therefore, there exists § > 0 small enough such that

oo s
[ MOl g dr < 1.
0

For %(z) > —34, it holds that |O)llcy < f5° e @Ol df < 1. We deduce that I — ©(z) is invertible for
N(2) > —8, with inverse given by Y0 (0(2))". S0 2/ > § > 0. 0

This assumption is typically satisfied if the non-linear part in (3) is weak enough. Given M € M;(C), let | M|, be the
spectral norm of the matrix M. We let [F] :=sup, yepa | Vy F (x, y) 2. Then, from (9), we have [|©;| ) < Cy[Fle %1,
Therefore, if [F] < i/ Cx, then A’ > 0, and so any invariant probability measure of (3) is locally stable.

Case of “separable” interactions
Assume that F is “separable”, in the sense that there exist functions w; : R¢ — R? and f; : R¢ — R such that

P
Vx,y e R? x Rd, F(x,y)= Zf,-(y)u),-(x).

i=1

Let Hg be the following subspace of H of finite dimension

P
Hozz{h|h:Zﬂiw,~, BeRPY.

i=1

For all 7 € H and for all # > 0, it holds that ®,(h) € Ho. The restriction of ®, to H¢ can be represented by a p x p
matrix, again denoted by ®,, and we have

o' = /R VyEy i (Y7)  wj(Mveo(dy), 1<i.j <p.

In that case, the determinant in Theorem 2.5 is the standard determinant of matrices. This instance already covers a
number of interesting examples.

Case with small noise (o >~ 0)

We now discuss the case where the noise o is small. The case o = 0 would require a special treatment and is not included
in Theorem 2.5. It is however instructive to see that the criterion involving (8) is equivalent to the classical stability
criterion of a deterministic dynamical systems in R?. When o = 0, the invariant measures are of the form 0y, for some
xx € R, Let V(x, y) = b(x) + F(x, y). Assume that

(15) Jk >0, supe HeN‘V("*’X*) ”2 < 00.
>0

This condition means that x, is a stable equilibrium point for the ODE y = V(y, x,). Indeed, (15) is equivalent to the fact
that the Jacobian matrix of the vector field x — V(x, x,) has all its eigenvalues in the left half-plane %i(z) < 0.

Lemma 2.9. Assume (15) holds and o = 0. Then, the criterion A’ > 0, " given by (8), is equivalent to the fact that the
Jacobian matrix of the vector field x — V(x, x) at the point x, has all its eigenvalues in the left half-plane 3(z) < 0.

The proof is given in the Appendix. We now treat the case o small using a perturbation argument of o = 0. Assume
that for ||o ||2 small enough, the McKean—Vlasov equation (1) has a unique invariant measure in the neighborhood of dy, .
That is, we assume that there exists pg, o9 > 0 such that for any o € M;(R) with det(o) > 0 and ||o ||> < 0y, it holds that:

Card{v € P, (Rd) : Wi(v,8y,) < po and v is an invariant probability measure of (1)} = 1.
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We denote by v, be this invariant distribution. To emphasize the dependence on o, until the end of this section, we also
denote by ®f the operator given by (6) when the SDE (5) has diffusion coefficient o. Similarly, we denote by Q¢ the
operator defined by (11). The precise description of @? and SZ? is given in the proof of Lemma 2.9. In particular, we have

O%(h)(x) = VyV(x, xy)e! VeV p(xy),
Assume that x, is a stable point for the ODE x = V(x, x). Then, by (15) and Lemma 2.9, it holds that

(16) e >0, fggem[“®?||cm) +| Q?HC(H)] < 0.

Proposition 2.10. Assume that (16) holds. In addition assume that for all € > 0, there exists 6 > 0 such that

(17) lolla<6 = wng®?—®ﬂuaufﬁ
=

Then there exists og, A > 0 such that

loll2 < o0, supe Q7 5y < 00
t>0

Therefore Theorem 2.5 applies and vg, is locally stable.

This result can be summarize has follows: assuming that x, is a stable equilibrium for the ODE x =V (x, x), if (17)
holds then stability also hold with small noise. Again, the proof is given on the Appendix. Finally, let us comment on
how the rate of convergence depends on o. Under the assumptions of Proposition 2.10, the constant A" given by (8) is
lower bounded by a strictly positive constant independent of ||o |2 € [0, op]. However, the rate of convergence is W1 norm
still depends on o: the bottleneck is coming from the constant « of (9), which in general vanishes as the noise goes to
zero. In some specific examples, the rate of convergence does not vanish as o goes to zero. Consider for instance the case
where b(x) + fRd F(x, y)v3, (dy) ==V V?(x) for some function V7 : R? — R. Assume that V is a uniformly convex
function, uniformly in o € [0, o9]:

J09, 7o > 0: Vo with |lo|l2 <00, Vx € RY, V2V (x) > noly,

where I; denoted the identity matrix on My (R). Then (9) holds with constants independent of o. In that case, the rate of
convergence in W norm in Theorem 2.5 does not vanish as the noise vanishes.

A simple explicit example
We close this Section with a simple explicit example. Consider for J € R* the following McKean—Vlasov SDE on R:

(18) dX; = —X,dt + JEcos(X,)dt + v/2dB,.
The associated linear process (Y;*) is the solution of the Ornstein—-Uhlenbeck SDE
dY® = —Y*dr + adr + +/2dB;.

This linear process admits a unique invariant probability measure given by v& = AN (e, 1), such that if G is a standard

Gaussian random variable, ]Ecos(Y,a’vg“) =Ecos(a + G) = % We deduce that the invariant probability measures

of (18) are {N(a, 1) | a € R, #a = cos()}. Let @ € R such that #a = cos(a). We have:

d J
vVi>0, ©,=J | —E YoWe (dy) = ——=e i .
> ¢ /Rdy ycos( t)voo( y) \/Ee sin(a)

So, for %(z) > —1, O(z) = —ﬁe’l/z sin() and the equation ©(z) = 1 has a unique solution z = —Je~ /2 sin(a) — 1.
This root is strictly negative if and only if J sin(a) > —4/e. We deduce by Theorem 2.5 that vZ, is locally stable provided

that J sin(ar) > —+/e. Recall that a+/e = J cos(c). So among all the invariant probability measures of (18), the (locally)
stable ones are the AV (a, 1) with

atan(e) > —1.
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2.3. Notations

For x € R?, we denote by |x| its Euclidean norm. Recall that H := Lz(voo) is the Hilbert space of measurable functions
h:R? — R4 such that

1h113, := / |1.(x) [P voo (dx) < 0.

We denote by K := W1°(R?; RY) the subspace of H consisting of all bounded and Lipschitz continuous functions
k:R?Y — R?. We equip K with:

VkelC, ki = lklloo + VKlloo-

Note that, using Assumptions 2.1 and 2.2, the operators ©; and €2;, defined by (6) and (12), map H to K. Given I a closed
interval of R, we denote by C(I; K) the space of continuous functions from 7 to K. Let o : R — R satisfying (4). Let
k € C(R4; K). Consider Y, ,“+k’” the solution of the following linear non-homogeneous R?-valued SDE

(19) Ay = p (YY) de 4 a (YY) de -k (YPY) dr + 0 dBy,

where the initial condition satisfies Law (Y hVy = 1. Note that Y*™ is a solution of (3) provided that k satisfies the
following closure equation:

(20) Vx €RYVE>0, a(x)+k(x) =EF(x, ¥

Finally, for y € R? and g a test function, we write ]Eyg(Y[‘”k) = Eg(Y,aJrk'ay).

A key ingredient in the proof of Theorem 2.5 is the notion of Lions derivatives. A function u : P»(R?) — R is Lions
differentiable at vy € P2 (R?) if there exists a deterministic function d,u(v) : RY — R such that for every random
variables Zy, H defined on the same probabilistic space (€2, F,P) with Law(Zp) = vp and E|H |2 < 0o, we have for
v=Law(Zo+ H):

u(v) = u(vo) + E[0vu(no)(Zo) - H] + o(\EIH[?), as E|H|? goes to zero.

We refer to [10] for a detailed presentation of this theory. Let ¢ € C'(R?) with ||V |ls < 00. We recall that the linear
functional

u(v) = / v (y)v(dy)
R4
is Lions differentiable at every vy € P> (R9), with a Lions derivative given by
Opu(o)(y) =V (y).
2.4. An integrated sensibility formula
Let « : R? — R satisfying (4). The goal of this Section is to prove the following “integrated sensitivity formula”.

Proposition 2.11. Let k € C(Ry; K) and v € P1(R?). Let g € C*(R?) with ||Vglleo + |V2glleo < 00. It holds that for
allt >0,

t
Eg (YY) —Eg(¥") =/0 /Rd [VyEyg (Y2 ) - ko (y) JLaw (YY) (dy) de.

Without loss of generality, we can assume that the initial condition v belongs to P> (R%). We define for all 0 < <1:
YwePy(RY), uf,(v):=Eg(¥ ).

By the Markov property, u‘tg o 18 linear with respect to v:

”ie(")Z/Rd Eyg (Y p)v(dy).



Stability of the stationary solutions of McKean—Vlasov equations 2415

By [29, Th. 7.18], the function y — E, g(Y;% ;) is continuously differentiable with a bounded derivative. So u‘i o is Lions
differentiable with

avuﬁe(v)(y) =V,Eyg (Y y).

Therefore, it suffices to prove that
t
(1) ~ Bg(1") = [ B[auf (Law (V) () (v ) o,
0 ,

Given 8 > 0 and k € C(R; K), we write for all u > 0:

ku(y) ifu=<®o

21 vy eRY, k() =
@h Y w =0y ifu>0

The proof of Proposition 2.11 is deduced from the following Lemma and from the fundamental theorem of calculus.
Lemma 2.12. The function 0 > Eg(Y*™ """} is differentiable for all 6 € (0, 1) and

@ L () < (Law (1) (1) o (1),

Proof. Fix 6 € (0, ¢) and § > 0 small enough such that 6 + 6 € (0, ). We write

o yotk,y 1. yoatkfy 2 . ypoatky
Yo:=Yo ', Yos=Yos 0 Y=Y
1 1 2 . 2
o :=Law(Yp), Hois = LaW(Y9+5), Hyas = LaW(Y9+3).

The notations are illustrated on Figure 1. We have by the Markov property satisfied by Y at time 6 + &

] 2 ul
Eg(Yta+k[9+6]'v) _ ]Eg(Ytoz-i-k ,v) _ Eg(Yta_l(Lee.T_g)) _ Eg(Yta—l(LegifS))'

By definition of the Lions derivative at the point ué +s We have

3 M 2
(23) Eg(yzoitbgig)) - Eg(Yzoi/:;IfS)) = Eavuie% (Mé+5)(yt9l+5) ) (Y92+5 - Y91+5) + 0( E’Y02+8 - Y91+8‘ )

2 2
Yiis ~ Bots

N 6]
(Y;J(.jﬁL )ue [0,t]
1045
et

]
)uE[O,t]

| | |
0 0 0+ t

time

Fig. 1. The two trajectories are driven by the same Brownian motion, with same drift except between times 6 and 6 + §.
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By Lemma 2.13 (a) below, it holds that o(, /E|Y92+5 — Y91+5 |2) = 0(8) as & goes to zero. We now approximate Y91+5 and
Y 92 s by a one-step Euler scheme:

o1 Yi s~ Vs = Yo +a(Ye)d + 0 (Woys — Wo)
Yi,s ~ Vs = Yo +a(Ye)s + ko (Yo)s + 0 (Woss — Wp)

Note that 1792+5 — 1791 +s = ko(Yp)S. These one-step Euler schemes have an error in L? norm of size o(8) (see
Lemma 2.13 (¢) below), therefore:

VEIY = TP+ VBV 5 = 2 =00,
so (23) gives

1
Aoy

2
Eg(YzoiI:;Ifs)) - Eg(Yt7(9+5)) = 8E[8vu§9+5 (“é+s)(yel+a) ko (Yo)] +0(8).
Finally, one has
E[3vief gy 5(Ho+5) (Yos) - ko (Yo)] = E[dvusf 4 (116) (Ye) - ko (Yo)]]
= |E[8vu§,9+5 (Mé+a)(yel+s) ko (Yo)] — E[avu§9+5(“0)(Y9) ko (Ye)]|
+ [E[0vuf g5 (1) (Yo) - ko (Yo) — Edyuf o (119) (Vo) - ko (Yo) ]| =: A1 + Ao
By Lemma 2.14 (a) there exists a constant C (¢) such that
Lem. 2.13 (b)
AL <COlkllicy BV s — Yo < COVS sup kol
€[0,t

Let € > 0 be fixed. Lemma 2.14 (b) yields for § small enough:

Ay <€ sup [kollik.
6¢€[0,1]

Altogether, we find that
Eg (v ™) — Eg (v M) = SEa,uf , (1) (Ya) - ka(Ya) + 0(5).
This ends the proof. ]
We used the following classical estimates (the constants depend on « and k):

Lemma 2.13. We have, with the notations introduced in the proof of Lemma 2.12,

1. it holds that E|Y] s — Y, s|* < C(1)8°.
2. it holds that B|Y,  ; — Yg|* < C(1)6.
3. the Euler scheme (24) satisfies IE|Y91+(s — 17914_5|2 + E|Y92+5 — 1702+5|2 =0(8%), as § goes to zero.

We also used the following regularity results on avuf’s(v)(y) = V,E,g(¥Y? ). The proofs follow easily from the
stochastic representation of y = V,[E,g(Y% ): in particular this function has a bounded derivative (because ||Vglloo +
1V2glloo < 00, see [29, Th. 7.18]).

Lemma 2.14. It holds that:

1. there exists a constant C(t) such that any square-integrable variables Z, 7',

sup Eld,uf  (Law(2))(Z) — d,uf (Law(Z))(Z')|* < C)E|Z — Z'|.

0<s<t
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2. the function s E)vuth (Law(Z))(Z) is continuous: for all € > 0 there exists § > 0:
Vs,s'€[0,1], |s—s'|<8 = Elguf (Law(2))(Z) — duf ,(Law(2))(D)|* <e.

Remark 2.15. It is also possible to prove Proposition 2.11 without using Lions derivatives. Fix ¢ > 0 and define for
s€(0,1)

(5, ) = ¢G5, y) :=E,g(YL)).
Given k € C([0, t]; K), we denote by

d
1
LoRy = b+ a+kg) VY + 5 > (00%), ;05059 6€l0,1],
ij=1

the infinitesimal generator associated to Y @+k Tt holds that ¢peC L2(10, 1) x RY ) with

d
8_¢(s1 y) = —ﬁf‘qb(s, y)
N

So, by Itd’s lemma,
Ep(s, YOHEv) =Eg (0, Yo ") — /0 ELZ(0, YooY do +/OS ELS ¢ (0, YSTY) do
=Ep(0, Y7 ™) + /O EVy (6, Yo ™") ko (Y ™) do.
We used that ﬁg“‘ V¥ — LGy =V - kg. Using the definition of ¢, we find:
Eg(s, YOT) = Eg(v"") + /Os /Rd VyEyg(Y ) - ke L(YSH) (dy) do.

Finally, we let s converges to 7 and find the stated formula.

As a corollary, we obtain the following apriori control of the Wasserstein distance between two solutions of SDE
driven by slightly different drifts. Recall that C,, «, > 0 are given by (9).

Corollary 2.16. Forallt >0 and k € C([0, t]; K), it holds that
Wi (Law(¥;4Y), Law(v"")) < /0 O g e .
Proof. Let g € C>(R?). Using (10) and Proposition 2.11, we have for g € C>(R?),
[Eg (v 5Y) — Eg(¥/"")| < Cull Velloo /0 Oy o .

This inequality also holds if g € C'(R?) by a standard approximation argument. (]

Note that by choosing g = F'(x, ), Proposition 2.11 gives:

t
(25) EF(x,Y,a+k‘”)—]EF(x,Y,“"’):// VyE, F(x, Y2 ) - ko (y)Law(Ye V) (dy) do.
0 JRr4

Recall that ®, (k) is defined by (6). When v = v, and when k is small, we obtain:

t

t
EF (x, YY) — a(x) ~ /0 /R VLB, F (¥, Y g) - Ko (9)voo(dy) d6 = fo Oy (ko) (x) d6.

This observation is crucially used in the next Section.
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2.5. Control of the non-linear interactions

Recall that (X/) denotes the solution of the McKean—Vlasov equation (3). For all # > 0 and v € P, (R?), we define
@ (x) :=EF(x,Y"") —a(x),
ki (x):= EF(x, X}’) —a(x).

Recall that €2;(h) is defined by (11). In this Section, we prove that:

Proposition 2.17. Forall T > 0, there is a constant C such that for all t € [0, T1, for all x € R and for all v € P (R?):

<Cr(Wi(v, Voo))2~

t
k;)(X)—QﬂtU(X)—/(; Qs (¢y) (x) ds

The first step is to show the following apriori estimate on k;’:

Lemma 2.18. Let T > 0. There exists a constant Ct such that

YveP; (Rd), tes[l(l)pT]Hkl” HIC < CrWi(v, Veo).

In addition, k¥ € C([0, T]; K).
Proof. We have
K (x) = /Rd F(x,y)(Law(X}) — voo) (dy).
Using Lemma 2.20 below, we deduce that [k} (x)| < C7[|Vy F|loo W1 (v, Voo). Similarly,
[V} (0)| < Cr |V F || Wi (v, veo).

This shows the bound on sup, (o 714/ Il xc. Moreover,
k) (x) — k! (x) = /Rd F(x,y)(Law(X;) — Law(X}))(dy).

In addition, for all 7 > 0 and v € P; (R?), there exists a constant C (7, v) such that
VO<s<t<T, W(Law(X;),Law(X})) <E|X; — X}| <C(T,v)/1 —s.
We deduce that k¥ € C([0, T]; H). O
Next, using Proposition 2.11, we show that:

Lemma 2.19. Forall T > 0, there is a constant Ct such that for all t € [0, T'], for all x € R4 and for all v € Py (Rd):

< Cr(Wi(v. veo))”.

t
K2 Go) — @V (x) — /0 O (k) (x) ds

Proof. Using the closure equation (20), we have:
kP (x) = EF (x, Y ) —a(x)
=EF(x, YY) —BF (x, YY) + ¢} (x).

We apply Proposition 2.11 and obtain:

t
k' (x) — ¢ (x) = /0 fRd VyEy F(x, Y2 ) - ky (y)Law(Xy)(dy) d6.
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We used that Law(YéH'kv"’) =Law(X}). Let
Gig(y) = VyIEyF(x, Yza—e) ky ().

We deduce that:
t

(=90 = [ 01k ds + R,
where
R = | (EGT,(X8) — EGY, (X2)) db.
Using Lemma 2.18, we deduce for all 7 > 0, there exists a constant Cr, such that
VxeRIVO<O <t <T, |VGiy|, <CrWi(v,vs).
Therefore, using Lemma 2.20 below, we deduce that |R;(x)| < C7 (W (v, Voo))?. O
By iterating the estimate of Lemma 2.19, we deduce the proof of Proposition 2.17.

Proof of Proposition 2.17. Fori € N, define:

Ul (x) :=<p,”(x)+f0 @t_g((pg)(x)d9+-~-+/0 0%, (¢p)(x)do.

Let Dr a constant such that for all k € C, sup, (o 711|®; (k) [looc < D7 ||k|loc- By induction, we have:

i i !
viel0,T], O K|, < (Dr) Y

I&lloo-

Let Ct be the constant of Lemma 2.19. By induction, we deduce that:

T s Drt)’
b= - [ o2 0| ).

<Cr(Wi(v, Voo))2<1 +Drt+---+ 1

o]

To conclude, it suffices to take the limit i — oo: 1//} converges uniformly to ¢; + f(; Q;_g(py)ds, and fot @?ff;”(kg )de
converges uniformly to zero. This ends the proof. (]

We used the following apriori estimate on the solution of (3).

Lemma 2.20. Let T > 0. There exists a constant Ct such that for all 1, 2 € P1(RY),
vi€[0,T], W;(Law(X;"),Law(X;?)) < CrWi(u1, u2).
Proof. Consider (X!', X!?) the solutions of (3) coupled with the same Brownian motion. The initial conditions

(Xh', X}*) are chosen such that E|X{' — X% = Wy (i1, 12). Let pu} :=Law(X["") and u? := Law(X}?). From (3)
and Assumption 2.1, we have

t
E|x!" — XI?| <E|x}' — Xx}?| +E/0 [b(X") = b(X2)|ds

t
+/ |EF (X!, y) —EF(X!2, y)|Law(X/")(dy)ds
0 JRA

t
+/
0

The functions F and b are Lipschitz, so there exists a constant L such that

deEF(X;‘2 y)(Law(X/") — Law(X%?))(dy)|ds.
R

t
E[x/" — X;?| <E|X}" — X4?| —i—L/O E| X}/ — X12|ds.
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By Gronwall’s inequality, we deduce that

Wi (Law (X)), Law(X[?)) < E[XI"' — XJ?| < ME|X}" — X52| = €™ Wi (11, 112). O
2.6. Proof of Theorem 2.5
We now give the proof of Theorem 2.5. By combining Proposition 2.17, Corollary 2.16, and Proposition 2.6, we obtain:

Lemma 2.21. Assume that )" > 0, where A’ is given by (8). Let A € (0, \"). There exists a constant C,._such that for all
T > 0, there is a constant Ct such that for all v € P; (Rd) and forallt €[0,T]:

Wi (Law(X}), voo) < Cre W1 (v, vo0) + Cr (Wi (v, voo))z.
Importantly, the constant C) above does not depend on 7.

Proof. We write
Wi (Law(X}), veo) = Wi (Law(yta—s-kV,v)’ Voo)

<W (Law(YtaJrkv’v), Law(Y,O"U)) + W (LaW(Yla’”), voo)

t
< c*f e D k|| L dO + CaWi (v, vog)e
0

We used Corollary 2.16 to estimate W (LaW(Yla+kv’v), Law(Y,"")) and (9) as well as Markov property to estimate
Wi (Law(Y;""), veo). Applying Proposition 2.17, we deduce that

t t 0
[l a0 [ gl + [ 1o+ crmnm)®

The estimate (10) implies that [|@} [lcc < CxWi(v, voo)||VyF||ooe_"*9. Fix A € (0, 1). In view of (7), (12) and the proof
of Proposition 2.6, the spectral assumption A" > 0 implies that there exists a constant C such that

VheH, Q)| <Ce M hllx.

Therefore, using that A < «,, we have

0 0
/ 1Q0—-u(e))]| o du < C/ e MO T (1, v00) du < Cre M Wi (1, Vo).
0 0

Altogether, we deduce the stated inequality. ]

Finally, the proof of Theorem 2.5 is deduced from Lemma 2.21 by following the argument of [7, Proposition 5.2].

Proof of Theorem 2.5. We choose T large enough such that C;e 7 < %. We choose € > 0 small enough such that

» 1
Wi, ve) <€ = Cr(Wi(v, Vo)) = Wi o).

Therefore we have, by induction, provided that Wi (v, vy) < €:
Wi (Law(X}7), voo) < (1/2)X Wi (v, voo).

We write t = kT + s for some s € [0, T'). Using Lemma 2.20, there exists a constant C such that
v k C —ct
Wi (LaW(X, ) voo) <C/2)"Wi(v, vs) < Ee Wi(v, vso),

where ¢ := %. This ends the proof of Theorem 2.5. ([
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2.7. Connections with Lions derivatives

In this Section, we give a probabilistic interpretation of the linear maps ®; (k) and €2, (h). Let (2, F, P) be a probability
space. Let Zo, H € L2(Q, F,P) such that Law(Zg) = vs.. We denote by & : R¢ — R a measurable function such that:

Pdw)p.s. E[H | Zo]l = h(Zy).

It follows from E|H|> < oo and from the Cauchy—Schwarz inequality that # € H. Define for all x € R?, > 0 and
v e Pa(RY):

uy (v) :=EF(x,Y"),
vi(v) :=EF(x, X}).
Proposition 2.22. Under Assumptions 2.1 and 2.2, we have:

1. There exists a constant Ct such that for all random variables Zo, H with Law(Zp) = veo and IE|H|2 < o0, for all
t € [0, T] and for all x we have, for v=Law(Zo + H):

Ju () = () = ©; ()| < CTE|H .
2. The function u} is Lions differentiable at v, with a derivative given by
Byt (voo) (v) = VyEy F (x, Y.

3. There exists a constant Ct such that for all random variables Zy, H with Law(Zy) = veo and E|H|* < oo, for all
t € [0, T] and for all x we have, for v=Law(Zo+ H):

[vF (V) —a(x) — (M) (x)| < CrE[H|*.
4. The function vy is Lions differentiable at v, with a derivative given by

t
(26) 8vvf(voo)(y):VyEyF(x,Y,"‘)—i—/o Qs (VyEyF (-, Y¥)) (x) ds.

Remark 2.23. In particular, from points 1 and 3, we have for all & € H:

O:(m) () = lim uy (Law(Zo + eh(Z0) = ax).

€
Q0 (M) = lim v} (Law(Zo + €h(Zp))) — a(x)
t = .
e—0 €

Proof. The first two points follow from the fact that u; (v) depends linearly on v: u} (v) =Eg(Zo + H), with g(y) :=
Ey F(x, Y). This function g is C? and there exists a constant C7 such that for all 7 € [0, T], for all x € R4, ||V2g||Oo <
Cr. Therefore:

1
} () ~ (o) =Bg(Zo+ H) ~ Bg(20) = [ Ve(Zo+01) - Has
0

1
=EVg(Zy) - H +E/ (Ve(Zo+0H) — Vg(Zo)) - Hdo
0

—EVg(Zo) - H + Or (E|HP?).
So uy is Lions differentiable at vo, with 0, u} (Vo) (y) = Vg(y). In addition:
EVg(Zo) - H=E[Vg(Zo) - E(H | Zo)] =EVg(Zo) - h(Zp) = O (h)(x).
The third point is a direct consequence of Proposition 2.17 and of the inequality:

W1 (1, Voo)? < Wa(v, voo)? <E|H |2
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To check the last point, it suffices to show that
E[0,v] (voo)(Zo) - h(Z0)] = Q4 (h),

where 9,V (Vo) () is given by the right-hand side of (26). This equality follows by the linearity of & — €2,(h) and by
Fubini’s theorem. ]

2.8. Static bifurcation analysis: A Green—Kubo formula

Our result also provides some information on the number of invariant probability measures of (3). In this Section, in
addition to Assumption 2.1, we assume that F' is bounded

sup |F(x, y)‘ < 00,
x,yeRd

and that the drift is confining in the sense that:
3R.B>0, Ix—yl=zR = (b(x)—=b»)-(x—y) =< —Blx -y’
We consider the following open ball of
Ko:={aek: llalx < Flloo + VxFllco}-

Let « € Ko. Then Assumption 2.2 holds with constants R, 8 independent of «. So the SDE (19) has a unique invariant
probability measure, denoted by vS,. In addition, the bound (9) holds, for some constants C and « which do not depend
on «. We consider ¥ : Ko — Ky, defined by:

Ya € Ky, Y(a) :=x|—>/ F(x, y)vy (dy).
R4

Note that there is a one-to-one correspondence between the invariant probability measures of (3) and the fixed-points of
W in Kp. The following result is a generalization of the Green—Kubo formula [36, Ch. 5]:

Proposition 2.24. The function WV is Frechet differentiable at every a € K¢y and
S A
DyV¥(a) - € =/ O:(e)dt = O(e)(0), €,a e Ky,
0

where ©; is given by (6).
Proof. We have forall T > 0,

ate o o+e,vite a+e, v,

y Fx,y) (03 —vd)(dy) = [EF (x, Y7 ) —EF(x,Y; )]
F[EF (s, Y %) S EF(r v )
=:A(x) + B(x).

By (9), there exist positive constants C, «, such that |A]x < CeTw, (vggf, v% ): this term can be made arbitrarily
small by choosing T sufficiently large. In addition, using Proposition 2.11, we have

o
ot€,v5

T
B(x) = /0 /Rd [VyEyF(x,Y§_p) - €(y)|Law(Y, )(dy)de.

It follows that || B||xc < C|l€||co. Letting T — oo proves that W is continuous. By refining the previous argument, we
show that this function is Frechet differentiable with the stated derivative. Define G} (y) := V,E, F(x, Y[) - €(y). We

have B(x) = fOT EG7_y (Y;+€’Ug°) df and, by Girsanov’s theorem, provided that || e ||gOT < 1, we have:

[EGH (7)) ~EG (1) = €| GF o | . VB lelo

< Ce T¢I 2 VT.
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Therefore, we deduce that

< C(ﬁ”ellgo +e7T).

‘B(x) —/(; /Rl VyEyF(x, Yg‘) -e(y)ve, (dy)de

Overall, there exists a constant C such that

'/ F(x,y)(ug;f—ugo)(dy)—f fVyEyF(x,Yg‘)-e(y)vgo(dy)dG‘
R4 0 R4

< Cle™T + |lelI2VT].

We choose T = 1/]|€||c and let ||€]|co goes to zero: the right-hand term is a o(]|€||o0)- The same estimate holds on the
derivative of W with respect to x:

'/ V, F(x, y)(v(‘;‘o'"E — Ugo)(dy) — f f V},E),VXF()C, Yé") -e(y)ve, (dy) d@‘
R4 0 R4

< Cle™T +|lel2VT].
Altogether, we deduce that o — fRd F(-, y)vg (dy) is Frechet differentiable with the stated derivative. (Il

The interpretation of this result is the following: static bifurcations, leading to a change of the number of invariant
probability measures of (3), occur for parameters satisfying det(/ — ©(0)) = 0. On the other hand, we expect Hopf
bifurcations to occur at parameters for which det(/ — é)(i w)) = 0, for some w > 0. Altogether, this covers the two
canonical ways to break the stability condition A’ > 0, where A is given by (8). The study of these bifurcations is left to
future research.

3. McKean-Vlasov of convolution type on the torus

Let 8 > 0. We consider the following McKean—Vlasov equation on the torus T¢ := (R/27 Z):
27) dXx; = —/ VW(X; — y)ui(dy)dr +/28~1dB, with u, =Law(X})
T

with initial condition Law(X) = v € P(T?). Here (B;) is a Brownian motion on T¢. This equation generalizes the
Kuramoto model [1,6,28,38], for which d = 1 and W = —« cos for some constant ¥ > 0. We refer to [11] for a detailed
presentation of examples that fit in the framework of (27), as well as a study of the static bifurcations of this equation. In
this Section, we study the local stability of the uniform probability measure using the strategy and the tools introduced in
Section 2.

3.1. Main result

Write the interaction kernel W : T¢ — R in Fourier:

(28) W) =Y Wme™, xeT’,

nezd

where n - x = Z?:l n;x;. Let |n|?> = n - n. The Fourier coefficients of W are given by

W (n)

= W)e " dy, neZl.
2y [w 6] y

Assumption 3.1. Assume that W € C3(T¢) and that Y nezd [n)2|W (n)| < oo.

The uniform probability measure

V@)=

is an invariant probability measure of (27) and
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Theorem 3.2. In addition to Assumption 3.1, assume that

/o . 2(n—1 A (1T
(29) A ._ne%{o} In|*(B~" +R(W(n)) > 0.

Then U(dx) = (;:)d is locally stable: there exists ) € (0,A"), € > 0 and C > 1 such that for all v € P(TY) with

Wi(v,U) < €, it holds that

Ve >0, Wi(Law(X}),U) < CWi(v, U)e ™.

Remark 3.3. The constant A’ is the exact analogue of (8) in Section 2. When the interaction kernel W is even, [11]
studies the existence of bifurcations of the invariant probability measures of (27), provided that there exists n € Z4 \ {0}
such that B~1 + R(W (n)) = 0. Therefore, criterion (29) is sharp: we prove that the uniform measure is stable up to the
first bifurcation. Note that we do not require here W to be even.

3.2. Proof

To simplify the notations, we first assume that d = 1. We discuss the case d > 1 afterward, most of the arguments being
the same. We write o :=+/28~1. The proof is divided into the following steps.

Step 1. Because VW is Lipschitz, the equation (27) has a unique path-wise solution satisfying the following apriori
estimate:

VT >0,3Cr :¥Yv,ue P(T), sup W;(Law(X;),Law (X)) < CrWi(v, ).
te[0,T]

Step 2. We define for v € P(T), x e T and ¢ > O:
Kk} (x) := —EVW (x — X}).
Recall that U (dx) = ‘21—7’;. Because ktU = 0, we have, by Step 1

[ oo = suplly () =k 0| < Cr [ V2W | Wi 0. 0.
Xe

In addition, x — k; (x) is differentiable and

Iv&y|l, = sugﬂz’Vk,"(x) — Vi ()| = Cr |V W] Wi, U).
xXe

Step 3. We now use that there exists Cy > 1 and «, > 0 such that
Vx,yeT, ¥t >0, W(Law(x 40 B;),Law(y + 0 B)) < Cxe ' |x — y|.
We refer to [35, Prop. 4]. We define forall # > 0, x € T and v € P(T):
o/ (x):=—EVW(x — X} — 0 B,),

where X is independent of (B;),>( and has law v. Because [V2W|ls < 00, by the preceding result and the
dual formulation of the W norm, there exists a constant C > 0 such that:

le/ |, < Ce ™ Wi, U).

Step 4. Let K := W1°(T) be the space of bounded and Lipschitz continuous functions from T to R. For k € C(R_; K)
and v € P(T), we consider (Y,k’”) the solution of the following linear non-homogeneous SDE

dvfY =k (vF')dr + 0 dB,,

starting with Law(Yg "y =v. Let g € C*(T). The integrated sensibility formula of Proposition 2.11 is, in this
context:

t
Eg(¥,") —Eg(v") = /0 /T V,Eyg(y + 0 Bi—g) - ke (v)Law(¥, ") (dy) d6.



Step 5.

Step 6.

Step 7.

Step 8.
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We let for h € L*(T) and x € T:

d
0, (h)(x) == —/ V,E,VW(x —y—0B)- h(y)z—y.
T v

VLZUZI —

nzf
Using that Ee/? Bt — ¢~ 2" =¢” 7, we find that the Fourier series of ©, (/) (x) is:

)12[ .
O (h)(x) ==Y _n*W(mh(n)e 7 ™.

nez

)12[ ~ ~
So @, is diagonal in the Fourier basis (¢/"*),,c7 and ©; (h)(n) = —n>W (n)e” # h(n).In addition, using |/ (n)| <
[1h]loo We have:

e, < Coe™PIhllso,

where Cp := Znezn2|W(n)| < 00.
We then define €2, (%) to be the unique solution of the Volterra integral equation:

t

viz0, 200=0,00+ [ O (2.m)d.
0
Again, €2; is diagonal in the Fourier basis:

Q) (x) == n*Wm)exp(—n’t[~" + Wn)])h(n)e™™.

nez
Let ' be given by (29). We have:
|2 o, < Coe™ " lIloc.

So, under the condition A" > 0, (€2;) decays at an exponential rate towards zero.
Let x € T be fixed. We now apply Step 4 with g(y) := —VW(x — y), and with k;(y) := k;/(y), where k; is

defined in Step 2. Note that with this choice, Y;"" = X and so Eg(Y}"") = k? (x). Similarly, Eg(Y"") = ¢! (x),
where ¢, (x) is defined in Step 3. Therefore, we have:

t
kf (x) — ¢/ (x) =/0 /TIEVZW(x —y—0Bi_y)- kg(y)LaW(Xg)(dy) do

t
:/0 O;—g(ky)(x)do + R (x),

where

t
Ry i= [ LG (x5) - Gy ()] 0
Glo(»):=EV*W(x —y—0B_p) - kj(y).
Using the apriori estimates of Step 2, we deduce that there exists a constant Cr such thatforall0 <6 <t <T:
|VyGF ()| = CrWi(v, U).

Using Step 1, we conclude that |R;(x)| < C7(Wi(v, U))z. To summarize, we have proven that for all 7 > 0,
there exists a constant C7 such that for all v € P(T) and for all t € [0, T']:

t
K () — ) () — /0 -0 (kV) (x)d8| < Cr(Wi(v, 1)),

By iterating the last inequality of Step 7, we obtain that for all 7 > 0, there exists a constant Ct such that

<Cr(Wi, 0))*.

t
K2 () — 0 () — /0 Qo (") () d
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Step 9. We prove that there exists a constant C > 0 such that for all ¢ > 0, for all k € C([0, t]; K) and for all v € P(T),
it holds that

t
Wi (Law(Y)"), Law(¥")) gc/ e kg [l oo 6.
0

The proof is obtained exactly as in Corollary 2.16; it uses the estimates of Step 3.
Step 10. We fix A € (0, min(x4, A)). Using Step 8, Step 6, and Step 3, we deduce that there exists C; > 0 such that for
all T > 0, there is a constant Cy such that for all t € [0, T] and v € P(T):

|62 o < Cr(Wi(v, 1)) + CL Wi (v, U)e ™.
Let k;(x) := k} (x). Using that X} = Ytk’”, we have:
Wi (Law(X}), U) < Wy (Law(Y"), Law(Y>")) + Wi (Law(Y "), U).
By Step 3, we have
Wi (Law (YY), U) < Cue ™ Wi (v, U).
By Step 9, we have
Wi (Law(Y)"), Law(¥"")) < C /Ot e =0 k| dg.

Altogether, we deduce that there is a constant C; such that for all 7 > 0, there exists Cy > 0 such that for all
t €0, T], forall v e P(T), we have:

Wi (Law(X)), U) < Wi (v, U)e ™ + Cr (Wi (v, U))’.

The proof of Theorem 3.2 is deduced from this estimate, exactly as we did at the end of Section 2.6. This ends
the proof ford = 1.

The case d > 1 is similar; the only differences are in the expressions of ®; and 2; of Steps 5 and 6. Given n € 74, we
denote by P(y) the d x d matrix defined by Pg) = (nin),; ;4 We find that for all € L2(T9;: RY) and for all x € T9,

T
O (h)(x) ==Y " Wne  F Puyh(n),
neZd
and
L Inf? % -
QM) == 3 " Wme T Py VOP0i(n),
neZd

The eigenvalues of P, are |n|2 (of order 1) and zero (of order d — 1). In addition, it holds that for 0 € R,

(P0)  =bu—j) + w(eelnp ).

i,] |n|2

Therefore, the estimates of Steps 5 and 6 still hold in dimension d > 1. This ends the proof.

Appendix

Proof of Lemma 2.9

Recall that V(x, y) :=b(x) 4+ F(x, y). When ¢ =0, then v, =y, for some x, € R?. Therefore (6) writes:
O (h)(x) = Vy V(x, xa)e' VYT h(x,) =1 AY - h(x).

We look at solutions of (12) of the form: €, (h)(x) := B} - h(x,), for some matrices B;. We find that B} satisfies

t
(30) Vi >0, Bf=A] +/o A}_, - B*ds.
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We first study this equation for x = x,.. For all z € C with %(z) > —«,

A% (2) = Vy V(X Xi) /0 Y Gl V) gy - VoV (s, 1) (21 — Vi V(e x0))
Lemma A.1. Let z € C such that R(z) > —«. Then det(I; — Xx\*(z)) = 0ifandonly if z is an eigenvalue of ViV (x4, x4) +
VyV (X, Xi).
Proof. When det(l; — A (z)) =0, there exists u € R? \ {0} such that
u=VyV(xs, x:)(2la — Vi V(xs, x*))_lu.
Setting v = (z1g — V, V (x4, %)) " 'u, we have v # 0 and
v = (VXV(x*, X)) + VyV(xy, x*))v.
So z is an eigenvalue of V,V(x, x4) + VyV (x4, x4). The converse statement is proved similarly. O

Now, assume that all the real parts of the eigenvalues of V,V(xy, x4) + VyV(xy, x4) are less than —2/, for some
A" € (0, k). Then, for all %i(z) > —1/, det(/ — A;*) # 0. Applying [30, Th. 4.1], we deduce that f;* M BM || dr < oo.
Using (30), one deduces that || B;** ||e“ < 00, and so

|2 W), = | (x| = B - hixy)| < Ce™ |h(xn)| = Ce™ 13

Therefore, A’ > 0. Conversely, if ' > 0 where A’ is given by (8) holds, then for % (z) > —1/, det(I; — A% (7)) #0. So by
Lemma A.1, z is not an eigenvalue of V,V (x4, xx) + VyV (x4, x4). We deduce that all the eigenvalues of this matrix have
real parts less or equal to —A/.

Proof of Proposition 2.10

Denote by 0, := eF — @9 and let L;(h) := ©,(h) + fé Q?_S(@s (h))ds. We also let R be the resolvent of L, such that R
solves

1
RIZLI+/ Ltfx‘RSdS.
0

Lemma A.2. It holds that for all t > 0, Q7 = Q0 + R, + [y R—, - Q0 ds.

Proof. Let Q; := Q? + R, + f(; R, ;- Q? ds. To simplify the notation, we write for A, B € L(H):

t
(A*B),:/ As_y - By ds.
0

Wehave LxQ =L+Q°+ L« R+ (L*R+Q% = R+Q"+ L x R. Therefore, using that L x* R = R — L and the definition
of O, we find that Q solves

(31) 0=Q"+L+LxQ.
AsL:C:)—I—QO*C:),wehave

0-(0+92"+0)x0=02"+0+2"x0.
We multiply on the left by ®°. Using that ©° « Q0 = Q° — ®°, we find that

%0 - %0x0=0"-0"+Q°«6.
Finally, using that ® = ®° — @°, we find that ©° — Q0 % ® % 0 = Q¥ % ©7. Altogether:

LxQ=0°%0—-Q"%«0°.
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We substitute this equality in (31) to finally obtain that

0=0°+0° % Q.

As Q7 is the unique solution of this Volterra integral equation, we deduce that Q% = Q as claimed. (|

By Assumptions, there exists og, ¥ > 0 small enough such that for all o € M;(R) with det(¢) > 0 and ||o || < 09, we
have

K

sup ' || Ly || £y < T
t>0

Therefore, we deduce that sup, el | Rillz3) < 5 and so the stated result follows using Lemma A.2.
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